Final Report

Retargeting of Existing FORTRAN Program
and ~
Development of Parallel Compilers-

NASA Contract # NAG 2-449
Dated : Sept. 26, 1988

submitted v Dr. Ken Stevens
Mart top 233-14
NASA Awes Research Center
Moffett Field, CA 94035

(NASA-CR-1828(6) BETABGETING CF EXISTING
ECHTEAN ERGGEAM 23D DEVELCERENT CF EABALLEL
CCRPILEBS Final Beport (North Carolina

"State Univ.) 6§57 § CSCL (9B
) G3/61

PI:Dr. Dharma P. Agrawal, Professor
Computer Systems Lab.

Department of Electrical And Computer Engineering

Box 7911
North Carolina State University
Raleigh, NC 27695-7911
Tel: 919-737-3894

Research Assistant : Sukil Kim

N89-163€5

Unclas
01854¢€3

Retargeting of Existing FORTRAN Program
and
Development of Parallel Compilers

SUMMARY

This report describes the software models used in implementing paralleliz-

ing compiler for the B-HIVE multiprocessor system. The various models and
strategies used in our compiler development are:

1)
2)
3)

1)

5)

Flexible granularity model, which allows a compromise between two
extreme granularity models;

Communication Model, which is capable of precisely describing the
interprocessor communication timings and patterns;

Loop Type detection strategy, which identifies different types of loops,
such as DOALL, DOACR, and DOSEQ);

Critical Path with Coloring scheme, which is a versatile:<cheduling
strategy for any multicomputer with some associated cuammmnication
costs;

Loop Allocation Strategy, which realizes optimun' avertapped opera-
tions between computation and communication of the systerr

Using these models, several sample routines of AIR3D package are exam-

ined and tested. It may be noted that automatically generated codes are highly
parallelized to provide maximize degree of parallelism, obtaining the speedup
up to 28 on a 32-processor system. A comparison of paralle! codes for both
existing and proposed communication model, is performed and the correspond-
ing expected speedup factors are obtained. The experimentation shows that
the B-HIVE compiler produces more efficient codes than existing techniques.

Working is progressing very well in completing the final phase of the com-

piler. Numerous enhancements are needed to improve the capabilities of the
parallelizing compiler.

CONTENTS

DO UCEION oeeeinieniiiniere et et ettt eeeseesensesnssassssnassernsnssssssenssssensnsenanns

B-HIVE Pa

rallelizing Compiler and Software Modelscc.oooevniiiinniiii,

1. Program DiviSIOnccceoirieiiiiniiieiiieiiriieiecee i nenieeeeennenns

2.Fl

exible Granularity Modelc.coeiiiviiiriiiiiiiiiii

3. Communication Modelccocoevviiiiiiiiiiiiiiiirieiecrerr e
4. Loop Detection and Allocationccccoveeiriiiiiiiiiiiiiiiniiinninienn,

Case Study

TAIR3D ..ottt

1. Sample Basic Block : FLUXVEeucceeeeiiiiiiiiiiniieieinnninnennnnnns
2. Sample DOALL Loop : XXM ...ccooviiiiiiiiiniiiiiiiiiiin et
3. Sample DOARC Loop : GRIDccoovvvvvvivriiiinniiiiiiininiinncieeane

Performance Evaluationooiuiieiieiiiiiiiiei v eceitte sttt seesesnsessnsanensans

Conclusion

...

1. Software Packages Developedcoiiiiiiiiiniiiiiiiiiiniiininnnn
2. Future Plancc.c.... oo v v
3. Suggestion and Commentccccceiiet eiiiiiiiiniiiin

References
Appendices

[= T & 4 BV I

11
12
25
27
28
31
35
41
41
42
42
43
46

it

CHAPTER 1

INTRODUCTION

Parallel computation is crucial in shortening the turnaround times for
massive scientific computations, such as computer aided design applications,
computational fluid dynamics, and weather forecastings. Numerous efforts
have been made to increase the speedup for such algorithms on various parallel
processors, such as vector processors [SwJ85], shared memory multiprocessors
[EBS84], and private memory multiprocessors [Cat87]. The major effort in util-
izing multiprocessor systems for computational fluid dynamics lies in the way
of increasing the degree of parallel operations and cutting down the turnaround
time that is extremely long on a uniprocessor machine. Navier-Stokes algo-
rithm that requires. massive computations, is a fundamental simulation model
for computational firid dynamics needed in designing a high speed aircraft.

Architectural innovation in multiprocessors has also encouraged the
development of nea tools :n exploring the capabilities of the parallel machines
[Fly72]. Trad ...«aly coded programs are not directly suitable for the new

architectures, an * asia(v they must be reorganized or modified to utilize the
power of the new r.achiues For this purpose, either we can develop a parallel-
izing compiler that transforms a sequential source program into parallel code
automatically, as described in [Ali83, AIK85, FER84, KKP81, PKL80, LAMS87,
LKASS], or we could provide programmers some sort of parallel programming
environment such as seen in new programming languages [Hoa78, Ahu86|, and
in the extended languages [Han77, KuS85, Sha86] so that the parallelism could
be specified manually.

The disadvantages of having new parallel language is the need for a new
compiler and. the mandatory need for rewriting the whole program all over
again for a new machine.

We have concentrated our efforts in retargeting existing software. The
advantages of having parallelizing compiler are its ‘‘user friendliness’’ and high
reusability. The user friendliness means that a user can get the parallel codes
without learning the new parallel language. Reusability implies that the exist-
ing programs can be run on a new parallel architecture simply by recompiling
the existing source code. The drawbacks of having a parallelizing compiler are
the higher compiling cost (due to the incorporation of automatic parallelism
detection algorithm), and a somewhat lower degree of parallelism (because of
inherently sequential algorithms or programmer’s coding styles).

Most past efforts on parallelizing compilers have been concentrated on the
loop structures. For example, parallelism in loops is extensively analyzed in
[PoB87, PKP86|, the granularity considered in [Cve87], and dynamic schedul-
ing covered in [PoK87|. These efforts are mainly concentrated on the paralleliz-
ing the codes for a shared memory multiprocessor system in which an interpro-
cessor communication overhead is negligible. In a loosely coupled distributed
memory multiprocessor system, however, communication overhead is large so
that run time task distribution itself would require excessive amount of time.
This limitation basically encouraged the use of the static scheduling in which
the task allocation is done before run time.

Navier-Stokes program has been restructured and tested under the static
scheduling strategy on a two-VAX 11/780 based shared memory multiproces-
sor, and the speed-up of 1.9 [EBS84] has been reported. This result is not too
encouraging and has forced to look into possible utilization of distributed
memory multiprocessors for computational fluid dynamics and other scientific
computations. This report covers various strategies that have been employed
in building a parallelizing compiler for a distributed ruemory multiprocessor
environment and describes the computation models used for the AIR3D pack-
age, a version of Navier-Stokes algorithm provided by the NASA. Oaly the
static scheduling strategy is. considered as the parallelizing compiler has been
developed for the ooscly' coupled B-HIVE multiprocessor system [AAGS6).
The B-HIVE multipracessor system is a 24-node generalized hypercube based
machine designed and built at the North Carolina State University. Each node
in the B-HIVE system consists of a pair of processors, an application processor
and a communication processor, which communicate with each other through a
fast dual-port shared memory.

In Chapter II, we describe the structure of the B-HIVE parallelizing FOR-
TRAN compiler. This chapter also describes the parallel software model and
communication model employed in the parallelizing compiler, and is accom-
panied with few examples. In Chapter III, we consider several AIR3D routines
extensively to show how the proposed software models and strategies are used
in the B-HIVE compiler. We also show the parallel codes for several sample
routines. Performance simulation and test results on some AIR3D subroutines
with proposed model is given in Chapter IV. Finally, the current status of the
project is summarized, and the future plans are also included.

CHAPTER 2

B-HIVE PARALLELIZING COMPILER AND SOFTWARE MODELS

B-HIVE parallelizing compiler accepts a sequential code and produce a
parallel code. It, automatically and interactively, detects parallelism of the
source codes, determines the type of loops, allocates parallel tasks, and finally
generate parallel codes. This chapter describes the parallelism detection and
utilization strategies used by the B-HIVE parallelizing compiler.

Figure 1 outlines seven phases in the compilation. The front end of the
compiler includes lexical and syntactic analysis of the source codes written in
FORTRAN. The second phase of the compiler reads syntactically verified
source codes and builds a program tree in which nodes and arcs represent tasks
and program control flows respectively. Source codex-are divided into a set of
tasks according to the program’s natural boundaries, such as loop bodies, com-
parison bodies, subroutines, and basic blncks A basic block includes a
sequence of consecutive <'atements without interior branching or stopping.
Within each basic block, the ¢« xecution order of 1ne statements is then carefully
analyzed based on the data dependence relations hetween every pair of state
ments. Defining "weak ' dependence relation between sets of statements by a
precedence relation, such that allocation of every set of statements onto two
different processors does not delay the completion time of a basic block, group-
ing statements into a set of tasks will improve or at least not worsen the perfor-
mance if every pair of tasks are weakly dependent on each other. In other
words, by grouping ‘‘strongly’’ dependent statements into a task, such that a
precedence relation between a pair of the statements delays execution if the two
statements of every pair are allocated onto different processors. This property
of grouping statements inside basic blocks provides another source of potential
parallelism of programs besides the parallel loops.

The potential parallelism of basic blocks is explored in the third phase of
the compiling process, forming a hierarchy of tasks based on the data depen-
dence relation between every pair of tasks. In a distributed memory multipro-
cessor environment, a communication overhead is inevitable so that grouping
strongly dependent statements into a task is crucial to eliminate excessive com-
munication overhead. A task is represented by a ‘“‘grain’’ which is basically a
group of operations. Partitioning a basic block into several grains is character-
ized as a granularity model. In a fine granularity model, each grain consists of
only few operations. For instance, in an extreme case, such as a data flow com-
putation, each grain contains one operation and all grains are concurrently

3

issued for better utilization of the resources. The drawback of this model is
that it tends to initiate a lot of communication and synchronization traffic
among the processors. Hence, this model is not appropriate for a distributed
memory multiprocessor environment. Another extreme example is a coarse
granularity model. Every grain has big chunk of computations, such as pro-
cedure level seen in a distributed computing environment wherein the commun-
ication overhead could be reduced to the minimum level at the expense of the
degree of parallelism [Bab84]. Flexible granularity model is a compromise,
resulting in the medium size grains. It begins exploring all potential parallelism
of the statements within each basic block, producing a set of fine grains, and
then regroups cohesive fine grains into medium grains, thereby decreasing the
communication overhead while retaining the parallelism among the grains.

In the fourth phase, every basic block is replaced with a block data depen-
dence graph, and a global data dependence graph of the program tree is built
to ensure proper code synchronization throughout the entire program. The
information obtained in this phase is turned into communication primitives in
the code synthesis phase. The next phase allocates all the tasks onto a limited
number of processors Optimal allocation of m tasks to n processors is a well-
known NP-complete problem {Sto77]. Thus, it is desirable to devise a heuristic
algorithm which gives 4 near optimal answer within a reasonable amount of
time [Efe82]. The illocation phase takes into account the computation times of
the tasks and the coninunication costs among them. Communication is con-
sidered according to the overlapped computation/communication model
described below and in [LAM87]. Finally, the synthesis phase reorganizes the
sequential codes and allocate them onto a number of processors inserting the
communication primitives and ultimately producing a separate (cooperating)
program for each processor.

Sequential Code

v

Syntax Verifier

~Program Partitioner

v

Basic Block Partitioner

v

Infinite Processor Scheduler

Y

Finite Processor Allocator

v

Code . Synthesizer

v

Object Code Generator

Figure 1. The Structure of the B-HIVE Parallelizing Compiler.

1. Program Division

The program divider builds a program hierarchy tree for a given program
into “‘non-leaf nodes” (that usually has child node) and ‘leaf node’ (that has
no child nodes). Control statements, such as loop header, comparison state-
ments are sources of non-leaf nodes, and basic blocks become leaf nodes. For
example, every DO-loop is considered as a non-leaf node, and then, every
nested loop is represented as a parent-child relation. The algorithm is
described in Figure 2. All program hierarchies shown in this report are built by
using this algorithm.

input : Sequential Program
output : Program Hierarchy Tree

1. Create root node of the hierarchy tree with the name of the program.
2. while not done

2.1. Create a new child node for the current node

2.2. repeat

Put statement into the child node of 2.1
until boundary statement is encountered.
2.3 Case A: { a starting point of a structure }
Create a new child node for the current node.
Current node := new child node of the current node.
2.4. Case B: { an ending point of a structure }
Current node := parent node of the current node.

Figure 2. Program Division Algorithm

For a given program with n statements, the time complexity of the pro-
gram division algorithm is O(n), since every statement in the given program is
visited exactly once in the algorithm while the time needed to process a state-
ment is constant.

2. Flexible Granularity Model

Basic block partitioning begins with building a “block data dependence
graph”, in which all potential parallelisms of a basic block is exposed. The
problem with a fine grain graph is that it contains too many nodes, and too
many communication arcs between nodes. To reduce the communication over-
head, cohesive fine grains are grouped into medium grains, decreasing the
number of arcs while retaining the parallelism among the grains. Cohesive fine
grains are a set of connected nodes in a block dependence graph. In other
words, there must be either a direct or an indirect precedence relation between
every two nodes.

Three precedence relations are considered in partitioning. The ‘“‘output
dependence’ relation occurs when two statements update the same variable.
This dependence relation can be easily solved by allocating the statements onto

different processors, where the interference is removed by the use of private
memory, or by maintaining the original order of execution if they are allocated
onto the same processor. Thus, output dependence is not an obstacle to paral-
lelism. The ‘““anti-dependence” represents the relation that a statement uses a
value that the following statement modifies. This relation can be resolved by
allocating each task onto different processors in which every processor reads the
value into its own private memory before execution. This enables several pro-
cessors to use and to modify concurrently without any conflicts. The “flow
dependence’ occurs when a statement produces a value that is used by a suc-
cessive statement. Whenever a pair of statements that have flow dependence
relation are allocated onto different processors, the interprocessor communica-
tion is unavoidable, which implies excessive communication overhead. To
prevent this, we need a more systematic mechanism to reduce the interproces-
sor communication by grouping the statements along the flow dependence arc.

A memory aliasing in a distributed memory multiprocessor requires more
careful consideration for grain grouping. Assuming array elements A[i] and
A[j], such that = at run time, it is unknowir whethere=3 at compile time.
For example, given

S, i=

S, Alij -

Ss read (j)

Sy Alij= -
Ss o = Al

S5 depends on either S, or S, since j is unknown at compile time.

Let T, : §;—S; be a task set that has statements S; and Sj, such that §;
must be preceded by S;. Then partitioning into two tasks, such as T, :
S;—S,—S5 and T, : S3—S, causes confliction if T, and T, reside in the
different processors, since S; must refer to the processor that has A[j] if j=1.
Similar situation is observed among the tasks that retain anti dependence rela-
tion. To solve this problem, a pair of array elements, that retain any pre-
cedence relations should be grouped together. We denote dependence relation
among array elements as ‘‘array dependence relation’ through the paper.

Flexible granularity model performs grain grouping, so as to eliminate
excessive communication traffic while retaining all, or at least most, parallelism
detected during the data dependence analysis. ‘“Vertical partitioning’’ provides
a way of grouping grains, in which every pair of fine grains has either direct or
indirect precedence relations are fused together forming a medium grain. By
labeling the dependence arc between every pair of grains with the correspond-
ing communication cost, we can determine every path cost along the arcs.

Assuming as if we allocate the longest path onto a processor, the next longest
path to anther processor, and so on, we obtain a number of parallel medium
grains that have fine grains on every corresponding path. However, the task
sets obtained solely by vertical partitioning do not promise optimum perfor-
mance, as the intertask synchronization between pairs of tasks some times defer
completion time compared to the case that the task pairs are allocated onto the
same processor. To avoid this circumstance, we propose a versatile grain
grouping algorithm based on ‘‘list scheduling” technique.

List schedulings [CoG72, KaN84] are a class of implementable static
scheduling methods in which tasks are assigned priorities and placed in a list
ordered in descending magnitude of priority. Whenever executable tasks con-
tend for processors, the selection of tasks to be immediately processed is done
on the basis of priority with the higher priority tasks executable being assigned
processors first. This characteristic of list schedulings tends to evenly distribute
tasks over all processors based on the load balancing criterion.

Our flexible granularity model solves both grain grouping and load balanc-
ing problems. It begins with finding the longest. patlr task in the vertical parti-
tioning technique. We delete communication overhead within the longest path
task, of which the cost implies actual computation tune of the task. Then
confirm whether other path tasks increase the longest path task cost due to
intertask communication between the longest pith task and other one. If there
is a task that defers the completion time of the 10ngest path task, this task is
merged to the longest path task until no more task affects the completion time
of the longest path task. During the task merging process, grains are reordered
according to the dependence relation between a pair of grains. We name the
proposed algorithm “Critical Path with Coloring” (CP/C) algorithm and sum-
marize it in Figure 3.

The advantages of CP/C algorithm are:

1) it can partition a basic block into a set of weakly dependent parallel tasks
with O(n?);

2) it represents a task with two timing values, the earliest finishing time, 7,
and the latest starting time 7, of the task, and with a color number that
represents the task group number;

3) it can simulate the near optimum completion time of a basic block on an

infinite number of processors, where the completion time is determined by
solely the longest path task cost;

4) in the worst case, a basic block is assumed a task so that it does not allow
excessive partitioning.

Consider the example that has several flow dependence relations among state-
ments with arbitrary execution costs, as shown in Figure 4. Flow dependence

relations are identified, such as §; S, -S3, S4— S5 and §,—S;. Let depen-
dence relation be replaced with same communication cost, 7.. If communica-
tion cost is enough small to simulate a shared memory multiprocessor architec-
ture, for instance, T.=400, task partitioning, such as T,:S,—S,~S; and’
T,:S4— 85 is the optimum way to shorten the completion time. If communi-
cation cost simulates a distributed memory architecture, for instance, 7, =1000,
task partitioning, such as T, : §,—S,~S3— S5 and T, : S is the optimum par-
titioning. If 1, >1000, all statements of the example becomes a single task since
any partitionings worsen the result.

input : Basic Block
output : Parallel Task Set

1. Build Array Dependence Graph, G

2. Append Flow Dependence Arcs of non-array Symbols to G

3. Label Dependence Arcs with Corresponding Communication Cost
4. while not empty (G) do

4.1. for every pathof GG, G, do

Cost[p] Y Grain Computation cost+> Communication cost
4.2. Find the lonugest path ‘o
4.3. Ehmiuate Comumurication cost from G,

4.4. Put color number to every grainof G,

4.5. while not finished do
Recalculate Cost|p)
if task T exists, such that T; mostly affects Cost[p] then
merge T; to G,
else set finished
4.6. Puteverygrainon G, intoa Task set, T,
4.7. Compute earliest finishing time and latest starting time of T,

4.8. Delete G,,m“ from G

Figure 3. Critical Path with Coloring Algorithm.

10

§,(1000) X= ---
S,(200) Y=X-+ ---
83(500) Z:X*Y*"'
S,(700) V= ---
S5 (1000 W=Y+V
(2) Basic Block
T1
Task Latest Earliest
T2 No Starting Time Finishing Time
1 0 1700
2 600 1400
(b) Task Graph (.= 100)
T1
T Task Latest Earliest
Q No Starting Time Finishing Time
1 0 1800
2 0 700

(¢) Task Graph (7, = 1000)

Figure 4. Sample Basic block Partitioning based on CP/C Algorithm.

Returning to the allocation problems, we have to allocate a number of task
set onto a limited number of processors. Whenever we have enough processors
to allocated every task set, we can allocate every task onto different processors
as vertical partitioning did. However, if we have a fewer processors than the
number of tasks, we have to combine multiple tasks onto a single processor in

11
an efficient way not to sacrifice the parallelism.

3. Communication Model

The purpose of scheduling is to allocate tasks onto a number of processors
so as to achieve the optimum performance of the process. This goal can be
accomplished by maximizing the utilization of available processors, while the
communication and synchronization activities between processors is kept to a
minimum. Intrinsically an efficient computation on a distributed memory mul-
tiprocessor is dependent upon not only the degree of parallelism of the pro-
grams but the ratio of computation cost over interprocessor communication
overhead. The minimizing of interprocessor communication overhead and
parallelization are two conflicting objectives in the allocation process. The
methods based solely on the first objective tend to utilize only few processors
for the sake of reducing communication overhead. On the other hand, methods
based solely on parallelization tend to increase the interprocessor communica-
tion overhead. One way to compromise these conflicting objectives is to overlap
computations and communications in the computation.

The computation model used in [Cam85, CLE80, Lo83, Patx4, SaH86]
have assumed that the outgoing precedence data are initiated at the end of the
computation. and the ucon.ng data have to be received prior to the computa-
tion. We will refer to this view Model A. The assumptions encountered in
~model A may not maximnize the computation / communication overlap when

there is more than one operation in the task, as in medium grain tasks.
Instead, in the proposed communication model, denoting Model B, all com-
munication activities of each task are accurately represented. The times that a
task produces outgoing data and the times it can proceed without the incoming
data are labeled in the model. Assuming the communication overhead be lesser
than the summation of the computation costs of parallelly executable portions
of the tasks, Model B produces better parallel codes than does Model A, as
indicated in Figure 5.

12

Processor 1 Processor 1

X=.. X =..

Y=X+.. Y=X+...

Z=.. send Y to processor 2
send Y to processor 2 Z=..

Processor 2 Processor 2

recetve Y from processor 1 V=..

V=.. receive Y from processor 1
W=Y+YV W=Y+V

(a) Model A (b) Model B

Figure 5. Expected Parallel Codes based on the two Cammuication models.

— et Bt &+ 0 i

In Model. A. P’racessor 1 sends Y upon completion of N3, and Processor 2
receives ¥ hito -« performing S, so that no overlapped o ration is allowed. In
Model B, ou tt+ other hand, Y is sent as Processor | has updated it and is
expected at the moimnent Processor 2 requests. Thus, Model B provides over-
lapped operations of communication between Processor 1 and Processor 2, and
computation of S; and 9.

Possibility of computation / communication overlap is examined by calcu-
lation the “‘benefit factor’’, which is a cost difference between parallel portions
of the task computation costs and the communication costs. If the benefit fac-
tor of a pair of tasks is positive, task allocation onto different processors will
achieve better performance than that onto the same processor. Overlap opera-
tion provides efficient ways of computation not only to a basic block, but also
to non-parallelized loop, as DOACR does in [PoB87] and other types of tasks,
such as DOALL loops and comparison blocks. We expand overlapped execution
to loops along the examples in the next section.

4. Loop Detection and Allocation

Fundamental source of extensive parallelism of programs is the loops. In
order to automate parallelism detection of loops, the compiler must look at the
data dependence relations in the loops. If a loop contains array data then the
data dependencies are somewhat more difficult to solve. If this is the case, an

13

array dependence relation has to be considered, that is more complex to process
than flow dependence relations in the scalar mode. In this chapter we intro-
duce techniques to detect loop types, such as DOALL, DOACR, and DOSEQ.
DOALL is a loop such that every iteration has no precedence relations so that
every iteration can begin simultaneously. Thus, DOALL loops can be distri-
buted onto processors in an arbitrary manner. DOACR is a loop type such that
iterations are weakly dependent so that overlapped operation may shorten the
completion time of the loop. DOSEQ type is similar to DOACR type but for in
which every iteration is strongly dependent. So distributing iterations of a
DOSEQ loop does not necessarily improve the loop performance, and in most
cases, they even worsen the performance due to interprocessor communication
overhead.

Every loop statement defines loop variable, lower bound, upper bound and
step size. Given FORTRAN loop body

DO 10 I = LB, UB, ST

10 CONTINUE

I,LLB,UB and ST be a loop variable, a lower bound, a upper bound, and a step
size, respectively. The nuinber of iterations is then given by

UB-LB+1

N=
ST

Then, the upper bound is normalized as
UBjorm=mia ((N—1)xST+LB, UB).

We will assume that an upper bound UB, in this discussion, has been normal-
ized for simplicity.

We define “‘array index vector’’ be an integer number, that specifies which
nested loop directly determines the indices of an array. If a loop index variable
is used as an array index within a loop, array index vector of the array index
position is set to ‘‘1”’ to indicate the array location is continuously changed per
every iteration. We also define ‘“‘displacement” to be a displacement of the
array location in the direction of loop index variable. For the example shown
below, D; and D; are the displacements for the loop variables I and J, respec-
tively.

L, DO100I=1,10
L, DO 100 J =1, 10

14

100 CONTINUE

Seen in L,, array index vector of A is set to ‘0’ since the array element of A is'
unchanged during the execution of L,. When the loop L, is the encountered,
the array A’s location is dependent upon the loop variable. To identify the
location of A is closely related ti the loop variable the array index vector of A
is set to ‘1’. Thus assigning an array index vector to ‘1’ implies that every loop
iteration modifies the location of the array element. Similarly, B's index vector
to L, is ‘2’, that implies the array B’s location is modified at the next immedi-
ate inner loop bodies. Seen in Ly, B’s array vector is set to ‘1’ as is A’s array
index vector to L.

After data dependence relation for the loop body has been constructed and
array index vectors and displacements have been computed, the compiler is
ready to test the loop types. It may perform some transformations on the
source codes to increase parallelism of the loops. So far, the B-HIVE compiler
does not include any of these transformations during the compilation, and only
can detect loop types for the given structure of the program.

The loop type detection algorithm firstly performs a) DOALL type detec-
tion algorithm that isolates DOALL loops, and then in the second pass, b)
DOSEQ type detection algorithm that isolates DOSEQ loops from a pool of
DOACR loops. Let Displ 4 k) be the displacement of an array A of which k-th
dimensional index express.on 1s ezpr, and Vect(A,Lvar,k) be the array index
vector of A at k-th dimension for an loop index variable Lvar. Using the nota-
tions defined above the following relations gives criteria to detect DOALL loops
on a distributed memory multiprocessor environment:

1) A loop is DOALL if none of arrays and scalar symbols are used and
defined within the loop.

2) A loop is DOALL if Disp(Ag,k)<Disp(A,,k) and
Vect(A4,Lvar k)= Vect(A,,Lvar,k)=1 for every pair of A; and A, where
A, is an array element defined and A, is an array reference.

Loop blocks that do not satisfy above two condition are assumed DOACR, and
are left for DOSEQ loop detection. In this report we give an example to test
the DOALL conditions instead of verifying the two conditions. The sample
loop below is clearly a DOALL according to the condition 1).

L, DO100I=1,10
A(I+1) = C(L-1)
100 CONTINUE

15

Consider the following loop body that is known to be parallelizable at a
shared memory multiprocessor or pipeline processor environment:

L, DO100I=1,10
S, A(+1)=C(l)
S, B(I)=A(l) x 2
100 CONTINUE

L, is not DOALL in a distributed memory multiprocessor environment,
unsatisfying the condition 2) since

Vect(Ay,1,1)=Vect(A,,I,1)=1
and
Disp(A4,1)=1>Disp(A,,1)=0.

where A; is A(I+1) and A, is A(I). The determination is correct since distri-
buting iterations in a card shuffling fashion encounters communication over-
head so as to send A (/+1) to the processor that executes the successive itera-
tion and to receive A (/) from the predecessor.

Loops that do not satisfy the above two conditions are considered as
DOACR or DOSEQ type loops. The DOSEQ isolation is performed based on
the communication mode! shown in Section 3. Assuming that every iteration of
the loops be distributed evenly onto the processors, a set of variables of an
iteration have to be sent to processors that need for successive iterations in
them. Let 7,(®) be the earliest time that a variable ® has to be received in
processors, and 7,4(®) be the latest time that a variable ® is ready to send in a
processor. Then the ‘“benefit factor” of distributed computation BF for ® is

BF g=1,(®)+7,,—74(®)~17.

where 7 is the execution cost of the loop body L;, and 7, is the communica-
tion cost. Thus, in the worst case, the benefit factor, BF ; is

BFmin=min(BF¢l,BF¢2, vt ,BF(D")

If BF;, is positive, distributing iterations onto processors will provide better
performance than allocating the loop on a few processors. Otherwise, alloca-
tion on a single processor is preferable. Using the example above, array ele-
ment A(*) is ready at the time S, has done and is received at the time S,
starts. Thus, BF ;;, <0, and as a result, L, is a DOSEQ loop. We can formal-
ize the loop type detection algorithm in Figure 6.

18

input : Loop body
output : Loop Type, either DOALL or DOACR

{ for a given loop body, L;, split DOALL and DOACR }
Loop_Type (L;) :=DOALL;
while not done do
for every symbol ®, such that ®, and @, exist do
{ where &, and @, are a variable ® defined and used within L,}
if @ is scalar variable then
Loop_Type(L,) :=DOACR;
done := true;
else { if array then }
for every dimension, k£ do
if (Vect(®,,,L;var k)= Vect(D,,L,var k)=1)
and (Disp(®4,k) > Disp (P, .k) then
Loop_Type(L;) :=DOACR;
done := true;
else { skip }

(a) DOALL Type Detection Algorithimn

input : DOACR loop
output : Loop Type, either DOACR or DOSEQ

{ for a given loop body, L,, split DOACR and DOSEQ }
while not done do
for every symbol ®, such that ®, and P, exist do
{ where ®, and ®, are a variable ® defined and used within L,}
Compute BF(®);
if BF (®)=<t, then
Loop_Type(L;) :=DOSEQ;
done := true;
else { continue for next symbol }

(b) DOSEQ Type Split Algorithm

Figure 6. Loop Type Detection Algorithm

17

Parallel loop allocation on a distributed memory multiprocessor should
consider a parallelizing overhead caused either by a number of iterations or by
a storage allocation. A large number of iterations is preferable as many as pos-
sible. If loop bounds are known at compile time, the compiler can determine
the possible allocations based on a economic analysis. If a number of iterations
of a loop block is quite small, relatively large communication overhead will
force the loop block to be allocated to a single processor. If a loop bound is not
known at compile time, the economic analysis fails, and one should select possi-
ble parallelization in manual or interactively. The B-HIVE compiler assumes
unknown loop bounds be enough big to utilize the processors, unless compile
directive switch ““SEQ” is preceded to a loop block so as to force the loop to a

DOSEQ type.

Loop blocks deal with array elements in the loop body, and in most cases,
array elements are linearly correspondent to the loop variable. That means the
array elements have to be distributed along the loop partitioning strategies
before loop execution. In order to prevent unnecessary waiting time to receive
the immediately requested variables, sending the variables as soon as they are
ready will reduce the waiting time. Similarly after loop execution updated
arrays have to be gathered at the compile time known processor for the succes-
sive references. We define the location of an array as “‘origin processor’’ of the
array.

Parallel loop allocations always encounter two communication overheads,
before and after a loop execution. For a DOAIL.L loop given

L, DO100I=1,10
A(I-1) = B(I+2)
100 CONTINUE

B has to be distributed before L, begins execution, and A has to be sent back
to the origin processor of A after L, has finished.

Two iteration distributing strategies are possible. We can distribute every
iteration onto processors in a card shuffling fashion, or allocate several contigu-
ous iterations at one processor and then next several onto the others until every
iteration is assigned. The first strategy is not powerful in DOALL loop imple-
mentation, since the origin processor (assuming all array variables reside at the
same processor) and others may have almost same number of iterations
although either the origin processor or the other processors do not start at the
same time. Assuming that a processor that performs sending variables can do
next executions as soon as it initiates send operations, and a processor that ini-
tiates receiving operation must wait until the variables are received, the origin
processor can share more iterations while the others are receiving variables.

18

The compensation can be realized under the first strategy, however, the origin
processor will have three loops; one for to compensate communication before
loop execution, one for after loop execution, and the same number of iterations
shared on processors. This will cause difficulty in synthesizing loops.

Another drawback of the first strategy allocating DOALL loops can be
found from the array storage usages. For example, consider a sample routine
that uses and updates two contiguous array elements, respectively, as indicated
below.

L, DO100I=1,10
A(l) = B(I)
A(I-1) = B(I+1)
100 CONTINUE

If we use the first strategy, every iteration consumes two disjoint array ele-
ments B(I) and B(I+1), and produces two array elements A (/) and A(I—1).
Thus, every processor needs 20 array elements. On the other hand, using the
latter strategy, each processor needs only 12 array elements since some of array
elements are used and updated repeatedly. Consequently, the latter strategy is
preferable to DOALL loops DOACR loops can shorten the completion time of
loops to the lowest cost only when every iteration is evenly distributed onto
processors, since a loop is DOACR if and only if the loop is not DOALL and
the benefit factor of distributed operations is positive. In our implementation
the latter strategy is applied to DOALL loops, and the first one is used for
DOACR loops.

Consider a DOALL loop L;, whose loop body execution cost is ;. Then
the extra iterations that the origin processor has to share for compensation is

2XT,

comp =
TL

and the number of iterations to be shared on processors is
. N —Ncomp
dist Pe
where N is the total number of iterations and Pe is the number of available

processors. The total number of iterations that an origin processor should do is
Neomp + Nyiyt- Then the loop bounds at a processor whose identification number

is PEno are determined by
LBpgn,=LB+(N o, + (PEno — PEorg)X N4,)X ST

and

19

UBpgn, =min(UB,LBy,, + (N, +(PEno — PEorg+1)X Ny, —1)XST)

comp

where PEorg is the identification number of the origin processor, and ST is a

step size of the loop.

Communication between a pair of processors is a distinct characteristics of
loosely coupled distributed memory multiprocessor architectures. The informa-
tion is directly passed through either a message passing or a circuit switching.
In any cases, a communication channel set up time is relatively expensive com-
pared to the actual communication cost of a unit data transfer. If a large
number of data is to transfer, and a new communication channel has to be rein-
itialized, communication overhead will increase proportional to the number of
data to transfer. If we send a block of data through the same channel that was
used, we can eliminate the communication channel set up time. To realize
block transfer operations, we define two array transfer primitives by

SEND(A(---I---)I=La,Ua,ST,Pto)
and
RECV(A(‘“I'--)I=La,Ua,ST,Pfr)

where La and Ua are a lower bound and an upper bound of the block data
referring array A, and Pto and Pfr are processor identification numbers to be
sent and to be received, respectively. Computing La and Ua are somewhat
similar to calculating the loop indices LB, UB. When an origin processor ini-
tiates distributing an array A, the two bounds are given by

La=LB+min(Disp(A,y,k), - - - ,Disp(A,n,k))
and
Ua=UB +max(Disp(A,,k), - - - ,Disp(A,p,,k))

where A; is a array referenced in the loop body. When an origin processor col-
lects an array A to restore in it, the two bounds are determined by

La=LB+min(Disp(Agy,k), - - - ,Disp(A 4 ,k))
and
Ua=UB+max(Disp(Aqq,k), « * + ,Disp(A 4 ,k)).

Communication primitives must be carefully inserted so as to avoid ‘‘dead
lock” caused by a non-pair send-receive operations. To prevent dead lock, we
add conditional statements to match the pair of communications as

IF (- - -) THEN

send or receive primitives

ENDIF

20

Consider the general format of the expected parallel codes for DOALL loops, as
indicated below.

100

A(-)=

B(--)=

DO 100.1‘; LB, UB, ST

s CaG1

S, B(I)=

CONTINUE
(a) Sequential DOALL Type Loop

A()= -
{ Distribute array A to PE, through PE,}
Compute array A’s indices, La, Ua for PE;
SEND (A(---I---)I=La,Ua, ST, PE;)
Compute array A'’s indices, La, Ua for PE,,;
SEND (A(---1+--)I=La,Ua,ST, PE,)

B(++")= "

{ Start loop }
Calculate LB,,, and UB,,,;
DO 1001 = LB,,;, UB,,,, ST

S.

f e =A(-c L)

S, B(I)=

100

100

21

CONTINUE

{ Restore Scalar values }

Calculate PE,,,, in which the last iteration is performed;
RECV (I, PEy);

{ Restore Array B by receiving from processors }
Calculate array B’s indices, La, Ua for PE;;

RECV((+1+-+)I=La, Ua, ST, PE,)

Calculate array B’s indices, La, Ua for PE,;
RECV 2‘) I = La, Ua, ST, PE m)

(b) Parallel code in an origin processor

Compute LBy, and UByy;
DO 100 I = LBy, UBgy, ST

IF (first steration) THEN
Calculate array A’s indices, La, Ua;
RECV(A(---1---)I=La,Ua, ST, PEorg)
ENDIF

S -=A(--'I---')

] o
S, B(---1-)=---

CONTINUE
{ Pass Updated Scalar to origin processor }
IF (last iteration) THEN
SEND (I, PEorg)
ENDIF
{ Pass Updated Array to PEorg }
Calculate array B’s indices, La, Ua for origin processor;
RECV (B(---1---)I=La, Ua, ST, PEorg)

(c) Parallel code in non-origin processors

Figure 7. Expected Parallel codes for DOALL Loops.

29

A boolean expression, first iteration ensures one receiving operation during
loop iterations by checking whether I = LBy,,. Similarly, last iteration
ensures one send operation after completion of the entire loop to restore the
scalars that are updated during the iterations.

Several loops sometimes form a nested loops, in which either DOALLSs or
DOACRs are included. If loop size is not known at compile time, the compiler
chooses an outermost DOALL loop as a parallelizable loops. As seen Figure 7,
all processors share the iterations for the same amount of time unless the
number of iterations is small enough to partition onto few processors. Thus the
compiler assumes all processors have their own iterations to do, and this
assumption prohibits further parallelization of the loop body that every proces-
sor has. Consequently, the loop body of DOALL loops are assumed sequential
codes. We will show the actual results of nested DOALL loops in the next
chapter.

Iteration distributing strategy in a card shuffling fashion is used for
DOACR loop allocation. The expected parallel codes for given DOACR loops
are similar to that of DOALL types except the variables that are used at the
following iteration are sent to processors they need and that are received from
the predecessors before they are needed. During DOACR loop synthesis, the
compiler does not need to change the upper bound of the loops. The step size
has to be modified to ST X Pe as does card shuffling, and the lower bound has
to be normalized to correct the initial index values in every processor.

Synthesizing the codes for variables that are ‘‘reference-only’ arrays are
the same as DOALL loops, such that reference-only arrays are the ones whose
elements are referenced but not redefined in the loop body. Using the notations
defined for DOALL loops, we can formalize the expected parallel codes for a
given example, as indicated in Figure 8.

23

100

100

Al)= ---

DO 100 I = LB, UB, ST
Sp N
Sn A(...I+D[...)=.

S cer = AL T)
S, :
CONTINUE

(a) DOACR loop code
A(--)= -~

{ Code for reference-only array distribution is identical to
DOALL loops }
DO 100 I = LB, UB, Pe XST
S, ce
S, A(- T4+ Dy)= -~
IF (NOT last iteration) THEN
SEND (A(: - -1+D; - - -), mod(PEno + Dy))
END

IF (NOT first iteration) THEN
RECV (A(---1---), mod(Pe+ PEno—D;))

ENDIF
S, cee = A(T)
Se -
CONTINUE

{ Restore scalars }

Calculate PE,,;, in which the last iteration is performed;
RECV ([, PE,,;)

{ Restore A }

calculate A’s indices, La, Ua for PE,
RECV(A(---1---)I=La, Ua,Pe, PE;)

calculate A’s indices, La, Ua for PE,,

RECV (A(---1---)I=La,Ua,Pe, PE,)

(b) Parallel code in an origin processor

24

L, DO 100 = LB+ mod (Pe + PEno— PEorg), UB, Pe XST
S, ce
S, A(“I+D;)= -
(NOT last zteratton) THEN
SEND (A(---1---), mod(PEno+ Dy))

END

F (first iteration) THEN
RECV (A(---1---), PEorg)
ELSE
RECV (A(---1---), mod(Pe+ PEno—Dy))
ENDIF
S, cee = A(L)
S, e
100 CONTINUE
{ Restore scalars }
IF (last iteration) THEN
SEND (I, PEorg)
ENDIF
{ Restore A }
calculate A’s indices, La, Ua for PEno
SEND (A(---I---)I=La,Ua,Pe, PEno)

(c) Parallel code in non-origin processors

Figure 8. Expected Parallel codes for DOACR Loops.

We will consider an actual DOACR loop routine in the next chapter.

CHAPTER 3

CASE STUDY : AIRSD

The AIR3D program [PuS78| is a huge program consisting of a large
number of statements with several subroutine calls, numerous variables and
many data dependencies between statements ought to be considered. We do
not go through the details of routines of the AIR3D program package, since our
discussion in this report is to show how a parallelizing compiler can automati-
cally transform sequential codes into parallel versions.

Before doing the actual restructuring or synthesizing the codes, few con-
trol low statements need to be rearranged for simplicity. The AIR3D program
extensively uses branch statements in which the condition is determined at run
time. Thus, the number of statements to be executed would depend upon the
value of the input data. Furthermore, compilers cannot follow the control
flows except for simple cases, since in many cases there are cyclic control flows
between statements. We therefore replace branch statements into correspond-
ing comparison statements, in which the number of statements within a com-
parison block is deterministic. This replacement make the speedup analysis
easier.

Several branch type blocks exist in the package. Denoting a ‘“forward”
branch such that all branch targets always follow branch instructions, and a
“backward’” branch such that branch targets locate before the branch instruc-
tion, we describe a way to restructure branch blocks into corresponding com-
parison blocks. Common branch structures in AIR3D package are ones having

‘IF (B —ezpr) GOTO S;’
where S; is a branch target to jump if B — ezpr is true. Branch blocks shown in
XXM, YYM and ZZM routines use this structure.

A backward branch block, in many cases, simulates a loop, similar to
“while” structures in Pascal. However, it is hard to restructure into a loop,
since there are many uncertainties to determine the loop types. In the experi-
ments, we do not consider restructuring backward branch blocks. Another
branch structure is to use three branch targets as

‘IF (B—ezpr) Sy, Sy, S5,
where S;, Sy, S; are the branch targets among which one of three locations is

active according to B —ezpr condition. If the instruction is forward branch, it
can be restructured similar to ‘GOTQ’ types. We show an example of ‘GOTO’

type forward branch restructuring in Figure 9.

26

IF(B —ezpr,) GOTO S,
IF(B - ezpry) GOTO Sy,

IF(B - ezpr,) GOTO §,,
GOTO S,

GOTO S,

GOTO S,

CONTINUE
(a) A Branch Block with n Branches

I[F(.NOT.(B — ezpr,).AND.(.NOT.(B - ezpr,).AND. - - -
.AND.(.NOT.(B — ezpr,)) THEN
ELSE IF(BS,) THEN

ELSE IF(BS,) THEN

ELSE
ENDIF

(b) Corresponding Comparison block restructured from (a)

Figure 9. Forward branch block restructuring.

27

1. Sample Basic Block : FLUXVE

Among several routines of the AIR3D program, AMATRX, DEBUG, and
FLUXVE are the routines that have few basic blocks (refer to Appendix A). A
basic block is a parallelizing source by the flexible granularity model associated
with the communication model. We choose FLUXVE as a sample routine.
Applying the vertical partitioning and the associated scheduling algorithm, we
can detect parallelism of the routine so that multiprocessor architectures could
be utilized.

Subroutine callers pass arguments through a processor that activates callee
routines. We assign a processor, say ‘1’ be the origin processor of the caller’s
arguments. Thus all undefined values referenced are assumed to be in the pro-
cessor ‘1’. Consider the actual codes shown in Appendix A-a). J, KL, R1, etc
of the first statement are are thought to be in PE,.

Theoretically, all the disjoint medium grain task sets can be allocated to
different processors. However, due to a limited number of processors, multiple
task set have to be allocated to the same processor. To realize medium grain
task allocation, we begin to allocate the longest path task and earliest finishing
time task first. During the allocation a “processor time space table”’ is main-
tained, which gives the inforination such as when a processor is ready to accept
tasks. The processor tinding procedure searches the processor time space table
to choose the ‘“‘best fitting’ processor, in which the time space gap becomes
minimum. In this way the task can start by the latest starting time of the task
or the task can start as soon as possible if it cannot start at its desired time. If
there are more than two tasks whose path costs are the same, then the earliest
finishing time task is chosen for allocation. If there is a time space, then an
unallocated small task can be inserted (and can be finished within the time
space), prior to the longest path task allocation.

This strategy simulates a statement reordering, which is a technique to
change the order of statements retaining the same result. Since a pair of tasks
can be allocated onto different processors until their time boundaries are
preserved, allocating small tasks that can finish earlier can be allocated before
the task that starts after the small task has been finished. We formalize the
basic block allocation algorithm, as below.

28

1. Sort tasks in descending order of the task cost;
2. while task pool is not empty do
2.1. Choose the longest task, T, . from the task pool;
2.2. Find the best fitting processor, P, _for T, _;
2.3. while exist do
Check time space gap of P,
Choose the longest task, T, that can fit in the space gap
and that can finish within the space gap;
if T, exists then
allocate T, onto P, _;
delete Ty from the task pool;
else reset exist;
24. allocate T, _onto P, _;

?

Figure 10. Basic Block Task Allocation Algorithm.

In the experiments, we use four identical processors to allocate tasks. We
can change the number of processors interactively during the synthesis phase.
We show the synthesized parallel codes of FLUXVE routine in Appendix A-b).

2. Sample DOALL Loop : XXM

A parallel loop allocation is a key issues in the loop implementation. As
we have described in Chapter 2, DOALL loops are free from finding processors
during the allocation since virtually all processors share the loops. Every itera-
tion is shared based on the loop body cost and the communication overhead
needed to distribute arrays.

Among several routines in AIR3D package, XXM, YYM, ZZM and
DIFFER have one or several DOALL loops within the routines. Before restruc-
turing the sample codes, the branch blocks are replaced with comparison
blocks, and then loop type detection algorithm determines as is DOALL
through the algorithm shown in Figure 6. Using the algorithm of Figure 6,

XXM is seen to be DOALL type and its loop body cost is 2652 time units.! The

'Timing results used in this report are the arbitrary values, not of the real machines. The time for
one floating point multiplication is assumed 80 unit times.

29

loop body cost is an average execution cost of one iteration, which realizes all
comparison blocks are evenly hit during the execution. Assuming the commun-

ication overhead be 1000 time units,? the origin processor will execute only one
more iteration than non-origin processors since the time space for one iteration
provides enough time space for non-origin processors to receive necessary vari-
ables and to restore the updated values in the origin processor upon completion
of the loop.

The DOALL loop allocation algorithm is given in Figure 11. The algo-
rithm firstly finds the origin processor that will start the first iteration and are
responsible for distributing the arrays. The origin processor is easily deter-
mined by searching processors that reside the task color number of the loop,
where the task color number was assigned during the task partitioning. Then
it synthesizes the loop bounds and loop header. Every statement in the loop
body is allocated to every processor one by one by adding communication prim-
itives and associated comparison statements. When the loop body encounters
the loop label, it begins restoring the arrays and scalars in the origin processor.
We show the synthesized parallel code of XXM, YYM, and ZZM in Appendices
B, C, and D, respectively.

#1000 of communication overhead simulates a hypercube environment, such as the tPSC machine.
Compared to the cost of multiplication (80), the communication cost is fairly large enough to simulate
communications in a loosely coupled distributed multiprocessor environment.

30

input : DOALL loop
output : Parallel DO Loop

1. Find the origin processor by task color number;
2. Append loop bound onto processors;
3. Put ‘DO xxx L,,,=LB,UB,ST’;
4. for every statement, S, do
4.1. while used variables are not available in a processor PEno do
if processor is PEorg then
Put send primitives;
if processor is PEno then
Append ‘IF (first iteration) THEN’;
Put recv primitives;
Append ‘ENDIF’
4.2. Append §;;
{ Restore defined variables to PEorg }
5. while defined variables exist in a processor PEno do
5.1 if processor is PEorg then
Put recv primitives;
5.2 if processor is PEno then
Append ‘IF (last iteration) THEN’;
Put send primitives;
Append ‘ENDIF’;

Figure 11. DOALL Loop Allocation Algorithm

The drawback of DOALL loop allocation in Figure 11 is that it may not
fully utilize the processors if the number of iterations is not large enough to be
shared by every processor. If this is the case, then fewer processors will execute
iterations although loop body could be parallelized further than that can be
detected as per the flexible granularity model). For a partially shown DOALL
loop of RHS routine given below, assume that KMAX iterations are distributed
onto a Pe -processor system. With KMAX = Pe, each processor performs one
iteration. The entire loop body is put into one processor and then, the comple-
tion time of the loop would be the loop body cost. However, if Pe =2X KMAX,
every iteration of L, can assign KMAX processors, and the inner loop body can
use another processor to shorten the completion time of the loop body. In this
case, better speedup can be achieved than when KMAX = Pe.

31

L, DOI10K = 1,KMAX
KL = (L-1)*ND+K

R1 = YY(K,1)

R2 = YY(K,2)

R3 = YY(K,3)

R4 = YY(K,4)

CALL FLUXVE(J KL,R1,R2,R3,R4)
L, DO12N=15
12 F(K,N) = FV(N)

10 CONTINUE

(a) A partial code from RHS routine

DO10 K=1,KMAX

L AN .
KL = (L-1)*ND+K R2=YY (K, 2)
R1=YY (K, 1) R3=YY (K, 3)
CALL FLUXVE(...) R4=YY (K, 4)
DO 12 N=1,2 DO 12 N=1,2
12 F (K,N)=FV(N) 12+ F(K,N)=FV(N)
AN Z

10 CONTINUE

(b) Expected Parallel code when two processor performs a loop body

Figure 12. More Speedup can be achieved by Loop Body Partitioning.

We can designate processors manually at compile time, allowing a number
of processors to execute a loop body together. Several processors then, can
share the loop body parallelism. In most cases, however, proposed DOALL loop
allocation algorithm is good enough as the number of iterations is generally
larger than the number of processors. In this report, we do not consider loop
body parallelization.

3. Sample DOARC Loop : GRID

Let us consider a sample DOACR loop of GRID routine. The variables N
and array G have to be passed from one processor to the successive processors

32

that perform the following iterations. Assume the origin processor be PE, in
the 4-processor system. The processor 1 passes N to the processor 2 upon com-
pletion of S, and performs S, and S;. Upon completion of S; the processor 1
also transfer G(1,J) to the processor 2. While the processor 1 performs S, and
S, the processor 2 has to wait for N to be received from the processor 1. As
soon as N has arrived, the processor 2 begins doing S,. Similarly the processor
2 sends N to the processor 3 upon completion of S; and G(J) upon completion
of S, respectively. By replicating these processes, every iteration is performed
in a “software-pipelining” fashion. Software-pipelining operation is advanta-
geous only when the communication overhead is less than the overlapped com-
putation cost. The example given in Figure 13 a) is DOACR while communica-
tion cost is less than 810 unit time as seen in Figure 13 b). The expected paral-
lel codes are given in Figure 13 c).

33

L, DO912J = NB11,NB2

(22) S, N=N+1

(788) S, GN = (1.0+EPS/SQRT(FLOAT(N+4)))**N
(104) S; G(1,J) = G(1,J-1)+DX*GN

912 CONTINUE

(a) A Sample DOACR Code from GRID routine

P
1
—_—
S1
S2 8p2
S8 »'*
S1
—_—
8110
S2

>
S3—t—»

(b) Communication between processors

C ALLPE IS TOTAL NUMBER OF PROCESSORS
C MYPE IS MY PROCESSOR ID NUMBER
C PEORG IS THE PROCESSOR THAT INITIATES LOOP
C MZZ,LZZ, LQQ ARE TEMP. VALUES
MZZ = NB2
LZZ = NBI11
LQQ = MOD (ALLPE + LZZ + MYPE - PEORG)
C BEGIN OF LOOP
DO 912 J = LQQ,NB2,ALLPE
IF (J.NE.LZZ) THEN
RECV (N, MOD(ALLPE + MYPE -1))
END
N = N+1
IF (J.LT.MZZ) THEN
SEND (N, MOD(MYPE + 1))
ENDIF
GN = (1.0 +EPS/SQRT(FLOAT(N+4)))**N
IF (J.NE.LZZ) THEN
RECV (G(1,J-1), MOD(ALLPE + MYPE -1))
END
G(1,J) = G(1,J-1)+DX*GN
IF (J.L| MZZ) THEN
SEND (G(1,J), MOD(MYPE + 1))
ENDIF
912 CONTINUE

(c) Expected Parallel codes.

Figure 13. DOACR Loop Allocation and Code Synthesis.

34

CHAPTER 4

PERFORMANCE EVALUATION

We have implemented the major portion of the B-HIVE parallelizing com-
piler. The compiler accepts input programs written in FORTRAN, along with
the system configuration, produces an allocation scheduling list, and finally
produces separate program for each processor. We did not implement a
software package to analyze precisely the timing result of the routines. How-
ever, the compiler gives timing information during the scheduling phase and
the code synthesis phase. Since the static allocation distributes the tasks based
on the processor time space table, the time information in the table gives data
for precise evaluation. However, it cannot fully support timing issues. For
example, DOALL loop allocation algorithm does not consider how many itera-
tions the loop should perform, and it assumes one iteration be assigned onto
one processor except the origin processor. Thus, the processor time space table
does not project the effect of iteration number a processor should perform. We
therefore calculate the timing results in hand, based on the timings of the pro-
cessor time space table.

We choose a number of AIR3D routines and process as stated in Chapters
1 and 3. The subroutines used in our experiment were XXM, YYM and ZZM
for DOALL cases, FLUXVE and AMATRX for basic blocks, and several other
routines are considered for DOACR loops. The parallel codes shown in this
report are restructured automatically but for the DOACR routines. Thus, we
do not evaluate the timings for the DOACR type routines.

In the experiment, we defined several working environments, setting the
number of iterations, the number of processors, and the communication cost.
The number of processors is varied, using 4, 16, 32 processors. We put the syn-
thesized parallel codes for the 4-processor system in the Appendices. We
assume that the communication cost between any two processors will be the
same (disregarding differences due to the computer network and the distance of
the two communicating processors). We also vary the communication cost be

1000 and 5000 unit times per word.!

'Communication cost of 1000 simulates a hypercube MIMD machines, such as the 1PSC Hypercube.
Communication cost of 5000 are used for the comparison purpose.

35

36

Parallelizing encounters overhead, such as synchronization, communica-
tion overhead, and an extra code execution overhead. Thus the speedup is not
always proportional to either the number of processors or the degree of parallel-
ism. The speedup value is calculated from dividing the sequential execution
time by the turn around time.

The timing results and the speedup factors for XXM are shown in Table I
and Table II. The results show that the parallel codes can achieve up to 28 in
the 32- processor system. This implies that the transformed DOALL loops are
highly parallelized, and as a result, the compiler can transform the DOALL
loops effectively. The better speedup achievement is observed when the
number of processors and the number of iterations are increased. However,
increment of processors does not necessarily increase the speedup when the
number of iteration is small. For example, when we increase the number of
processors from 16 to 32 for 10 iterations, the speedup values are decreased, as
indicated in Table | and II. It is also observed that the speedup values are
decreased when the unit communication cost is increased, as expected. We
observed the results for YYM and ZZM. The trends seem quite similar to
XXM.

The B-HIVE compiler can also improve speedup factors for basic blocks,
such as FLUXVE, that has several assignment statements only. Normally it is
not known to be parallelizable, but the flexible granularity model provides a
way to obtain parallelism as we have described. The simulation results when
the communication cost be 1000 and 5000 unit times, the speedup factors are
1.1 and 1.0, respectively. The unit speedup at 5000 is expected, since the com-
piler avoids excessive parallelizing automatically by assigning a whole routine
to a single processor. The timing results are given in Table VII.

Table I. The Total Times Needed for Execution of Subroutine XXM.

Number of Iteration (Comm. cost = 1000)
#of PE | 10 100 1000
4 11253 69597 666297
16 9365 25277 173789
32 11273 19229 93485
Number of Iteration (Comm. cost = 5000)
4of PE | 10 100 1000
4 16553 74897 671597
16 16822 30082 181246
32 21382 26686 103594

Table II. Speedup Result for X XA

|| Number of Iteration (Com . «ost = 1000)
#of PE | 10 100 1000
4 | 240 382 | 3.98
16 2.88 10.51 15.26
32 2.39 13.82 28.37
Number of Iteration (Comm. cost = 5000)
#of PE | 10 100 1000
4 1.63 3.55 3.95
16 1.60 8.83 14.63
32 1.26 9.96 25.60

37

Table III. The Total Times Needed for Execution of Subroutine YYM.

Number of Iteration (Comm. cost = 1000)
of PE 10 100 1000
4 11827 73867 708367
16 9607 26527 184447
32 14167 22627 101587
Number of Iteration (Comm. cost = 5000)
of PE 10 100 1000
4 17467 79507 714007
16 18067 32167 192907
32 22627 28267 110047

Table IV. Speedup Result for ¥ YM

[L [Number of Iteration (Comm. cost = 1000)
#of PE | 10 100 1000
4 2.40 3.80 3.98
16 2.98 10.65 15.29
32 2.02 12.48 27.76

Number of Iteration (Comm. cost = 5000
of PE 10 100 1000
4 1.64 3.55 3.95
16 1.58 8.78 14.62
32 1.26 9.99 25.63

38

Table VI. The Total Times Needed for Execution of Subroutine ZZM.

Number of Iteration (Comm. cost = 1000)
of PE 10 100 1000
4 11557 72057 690807
16 9477 25977 179977
32 14037 22287 99287
Number of Iteration (Comm. cost = 5000)
of PE 10 100 1000
4 19807 77557 696307
16 17727 27787 107537
32 22287 27787 _10753"

Table VI. Speedup Result for ZZM

:__ Th Nuiuber of Iteration (Comm. cost = 1000)
#of PE | 10 100 1000
4 2.41 3.82 3.98
16 2.94 10.60 15.28
32 1.99 12.37 27.70
Number of Iteration (Comm. cost = 5000)
#of PE | 10 100 1000
4 1.41 3.55 3.95
16 1.57 8.75 14.61
32 1.25 9.91 25.58

39

Table VII. The Total Times Needed for Execution of Subroutine FLUXVE.

(Comm. cost = 1000)
of PE | Total Time | Speedup
1 3268 1.0
4 2978 1.1

(Comm. cost = 5000)
of PE | Total Time | Speedup
1 3268 1.0
4 3268 1.0

40

CHAPTER 5

CONCLUSION

An approach for parallelizing sequential program has been developed in
this work. The vertical partitioning and appropriate scheduling is used in the
B-HIVE parallelizing compilers. The performance of the parallelizing models is
determined using several routines of AIR3D program package. Especially, the
communication overhead is considered to evaluate the task allocation on a dis-
tributed memory multiprocessor system. As seen in the parallel code synthesis
examples, the B-HIVE compiler can transform the sequential codes into parallel
version automatically. The speedup factor is quite close to the number of pro-
cessors when the number of iterations is large, and the results seems superior to
the results in [EBS84]. The current version of the compiler can restructure
DOALL loops, basic blocks automatically, and will be updated to restructure
the DOACR loops. '

Beyond parallelizing, the parallelizing compiler should consider a way to
restructure branch instructions, especially the forward branch type codes,
automatically. Upon completion of the compiler implementation, we are plan-
ning to test the correctness of the compiler for several scientific packages, such
as EISPACK and LINPACK. Actual test will also be conducted thereafter.

1. Software Packages Developed

So far, we have implemented several software packages that are used in
the various phases of the B-HIVE compiler at North Carolina State University.
Following is the list of software packages classified as per the compiling phases.

(1) Phase 1 : FORTRAN Program Syntax Verifier: implementation com-
pleted.

(2) Phase 2: Program Partitioner: implementation completed.
(3) Phase 3 : Basic Block Partitioner: implementation completed.
(4) Phase 4 : Infinite Processor Scheduler.

a) Loop Type Checker has been implemented.
b) Basic Block and DOALL Loop schedulers have been implemented.
¢) DOARC and DOSEQ Loop schedulers are under construction.

41

42

(5) Phase 5 : Finite Processor Allocator.

a) Basic Block and DOALL Loop Allocator have been implemented.
b) DOACR and DOSEQ Allocators are under construction.

(6) Phase 6 : Code Synthesizer. It has been implemented.

(7) Phase 7 : B-HIVE Coordinator / object code generator. It is under con-
struction based on the communication primitives designed for DOALL
loops and Basic blocks.

2. Future Plan

We will continue the implementation of the parallelizing compiler and
make it operational on a real machine (B-HIVE). The necessary work to be
done during '88 and 89 includes :

(1) Completion of DOARC and DOSEQ loop scheduler associated with allo-
cation strategy development.

(2) Study on subroutine calls and argument passing strategies on a loosely
coupled distributed memory multiprocessor environment.

(3) Extensive evaluation of the compiler with testing. Testing will include
restructuring of AIR3D package and other scientific packages.

3. Suggestion and Comment

The parallelizing compiler work is a time consuming project. It requires
highly advanced techniques in various fields, such as parallel processing, com-
piler construction, data structure implementation, and programmings, and etc.
If additional funds are awarded, we could complete the implementation of the
parallel compiler soon, and newer techniques could be developed. With the
NASA’s support, we have no doubt that our compiler will be the first actual
parallel compiler for the loosely coupled distributed memory multiprocessor
environment.

[AAGS6]

[Ahu86]

[Ali83]

[AIKS5]
[Bab84]

[Cam85]

[Cat87]

[CHLS0]

[CoG72]

[Cve87]

[EBS84]

[Efe82]

43

REFERENCES

D.P. Agrawal, W.E. Alexander, E.F. Gehringer, R. Mehrotra and
J. Mauney, “B-HIVE Project: Present and Future, in Book”
Supercomputers: Algorithms, Architectures and Scientific Compu-
tation, UT Press, Austin, TX 1986, pp. 11-18.

S. Ahuja, “Linda and Friends,” IEEE Computer, vol. 19, no. 8,
Aug. 1986, pp. 26-34.

J.R. Allen, “Dependence Analysis For Subscripted Variables and
Its Application to Program Transformation,”” Ph.D. Thesis, 1983,
Rice University, Houston, Texas.

J.R. Allen and K. Kennedy, ‘“A Parallel Programming Environ-
ment,’”’ IEEE Software, vol. 2, no. 4, July 1985, pp. 21-29

R.G. Babb II, “Parallel Processing with Large-Grain Data Flow
Technique,” IEEE Computer, vol. 17, no. 7, July 1984, pp. 55-61.

M.L. Campell, “Static Allocation for a Dataflow Multiprocessor,”’
Proc. of 1985 International Conference on Parallel Processing,
1985, pp. 511-517.

C.J. Catherasoo, ' Separated Flow Simulations using the Vortex
method on a Hypercube,” ATAA 8th Computational Fluid Dynam-
ics Conference, June 9-11, 1987, pp. 81-86.

W.W. Chu, L.J. Holloway, M.T. Lan, and K. Efe, “Task Alloca-
tion in distributed Data Processing,”” IEEE Computer, vol. 13, no.
11, Nov. 1980, pp. 57-69.

E.G. Coffman and R.L. Graham ‘“Optimal scheduling for two-
processor systems,”’ Acta Informatica, Vol.1, No. 3, 1972, pp. 200-
213.

Z. Cvetanovic, ‘“The Effects of Problem Partitioning, Allocation,
and Granularity on the Performance of Multiple-Processor Sys-
tems,” IEEE Tran. on Computers, vol. C-36, no. 4, Apr. 1987, pp.
421-432.

D.S. Eberhart, D Baganoff and K.G. Stevens, Jr, “Study of the
Mapping of Navier-Stokes Algorithms onto Maultiple-
Instruction/Multiple-Data Stream Computers,” NASA Tech.
Memo. 85945, NASA Jul. 1984

Efe, “Heuristic Models of Task Assignment Scheduling in Distri-
buted Systems,” IEEE Computer, vol. 16, no. 6, June 1982, pp.
50-56.

[FER84]

[Fly72]

[GKLS83]

[Han77]
[Hoa78]

[KaN84|

[KKPS81]

[KuS85]

(Lo83]

[LAMS7]

[Pad79]

[PKLS0]

[SwJ85]

44

J.A. Fisher, J.R. Ellis, J.C. Ruttenberg, and A. Nicolau, ‘“Parallel
Processing: A Smart Compiler and a Dumb Machine,” Proc. of the
ACM SIGPLAN °84 Symp. on Compiler Construction, June 1984,

pp. 37-47. '

M.J. Flynn, “Some Computer Organizations and their
effectiveness,” IEEE Trans. on Computers, vol. C-21, no. 9, pp.
948-960, September 1972.

D. Grajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR: A Large
Scale Multiprocessor,’”’ Proc. of the 1983 International Conference
on Parallel Processing, Aug. 1983, pp. 524-529.

P.B. Hansen, The Architecture of Concurrent Programs, Prentice
Hall Inc., 1977.

C.A.R. Hoare, “Communicating Sequential Processes,”” CACM,
Vol. 21, no. 11, Aug. 1978, pp. 666-677.

Hironori Kasahara and Seinosuke Narita, ‘“‘Practical multiproces-
sor scheduling algorithms for efficient parallel processing,” IEEFE
Trans. on Computers, Vol. C-33, No. 11, Nov. 1984, pp. 1023-1029.

D.J.Kuck, R.H. Kuhn, D.A., Padua, B. Leaure, and M. Wolfe,
“Dependence graphs and Compiler Optimizations,” Proc. of the
8th ACM Symp. on Principles of Programming Languages, June
1981, pp. 207-218.

J.T. Kuehn and H.J. Siegel, ‘“Extensions to the C Programming
Language for SIMD/MIMD Parallelism,” 1985 International
Conference on Parallel Processing, August 20-23, pp. 232-235.

V.M. Lo, “Task Assignment in Distributed Systems,”” Ph.D thesis,
Univ. of Illinois, Oct. 1983.
J. Leu, D.P. Agrawal, and J. Mauney, ‘“Modeling of Parallel

Software for Efficient Computation-Communication Overlap,”
Fall Joint Computer Conference, Oct. 25-29, 1987, pp. 569-575.

D.A. Padua, ‘“Multiprocessors: Discussion of Some Theoretical and
Practical Problems,”” Ph.D. Thesis, 1979, University of Illinois at
Urbana-Champaign.

D.A. Padua, D.J. Kuck, and D.H. Lawrie, ‘‘High-Speed Multipro-
cessors and Compilation Techniques,” IEEE Tran. on Computers,
vol. C-29, no. 9, Sept. 1980, pp. 763-776.

J.M. Swisshelm and G. M. Johnson, ‘“Numerical Simulation of
Three-Dimensional Flowfields Using the Cyber 205,” in Supercom-
puter Application, ed. by R.W. Numrich Plenum Press, New York
1985, pp. 179-195.

[Pat84]

[PoB87]

[PoK87]

[PKPs6]

[Sha86]

[SaH86]

[Sto77]

45

G.C. Pathak, “Towards Automated Design of Multicomputer sys-
tem for Real-time Applications,” Ph.D. Thesis, 1984 , North Caro-
lina State University at Raleigh.

C.D. Polychronopoulos and U. Banerjee, “Processor Allocation for
Horizontal and Vertical Parallelism and Related Speedup
Bounds,” IEEE Trans. on Computers, vol. C-36, no. 4, Apr. 1987,
pp- 410-421.

C.D. Polychronopoulos and D.J. Kuck, “Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers,”
IEEE Tran. on Computers, vol. C-36, no. 12, Dec. 1987, pp. 1425-
1439.

C.D. Polychronopoulos, D.J. Kuck, and D.A. Padua, ‘“Execution of
Parallel Loops on Parallel Processor Systems,”” Proc. of 1986 Inter-
national Conference on Parallel Processing, Aug. 1986, pp. 519-
527.

E. Shapiro, “Concurrent Prolog: A Progress Report,” IEEE Com-
puter, vol. 19, no. 8, Aug. 1986, pp. 44-58.

V. Sarkar and J. Hennessy, ‘“‘Compile-time Partitioning and
Scheduling of Parallel Programs,” ACM SIGPLAN 86 Symposium
on Compiler Construction, June 23-27 1986, pp. 17-26.

H S Stone, “Multiprocessor Scheduling with the Aid of Network
Flow Algorithm,” IEEE Trans. of Software Eng., Vol. SE-3, 1977.

APPENDICES

Subroutine FLUXVE

Subroutine XXM

Subroutine YYM

Subroutine ZZM

46

APPENDIX A. SUBROUTINE ‘FLUXVE’

RR = 1./Q(KL,1,J)

U = Q(KL,2,J)*RR

V = Q(KL, 3,J) *RR

W = Q(KL,4,J)*RR

QS = R4+R1*U+R2*V+R3*W

PP = GAMI* (Q(KL,5,J)-.5*Q(KL,1,J) * (U*U+V*V+W*W))
RJ = 1./Q(KL, 6,J)

QSINFJ = (R4+R1*UINF+RZ2*VINF+R3*WINF) *RJ
PINFJ = PINF*RJ

FV(1l) = Q(KL,1,J)*QS

FV(2) = Q(KL,2,J)*QS+R1*PP

FV(3) = Q(KL,3,J) *QS+R2*PP

FV(4) = Q(KL,4,J)*QS+R3*PP

FV(5) = (Q(XL,5,J)+PP) *QS-R4*PP

FV(l) = FV(1l)-QSINFJ

FV(2) = FV(2)-UINF*QSINFJ-R1*PINFJ

FV(3) = FV(3)-VINF*QSINFJ-R2*PINFJ

FV(4) = FV(4) -WINF*QSINFJ-R3*PINFJ

FV(5) = FV(5)-(EINF+PINF) *QSINFJ+R4*PINFJ
RETURN

END

a) Sequential Code

APPENDIX A (continue)

b) Parallel Code

FILE

1

{Processor 1}

CALL SEND (J 4)
CALL SEND (KL 4)
CALL SEND (R1 4)
CALL SEND (R2 3)
CALL SEND (J - 3)
CALL SEND (KL 3)
CALL SEND (R3 2)
CALL SEND (J 2)
CALL SEND (KL 2)
RR = 1./Q(KL,1,J)

CALL SEND (Q 4)
CALL SEND (Q 3)
CALL SEND (Q 2)
CALL SEND (UINF 4)
CALL SEND (VINF 3)
CALL SEND (WINF 2)
U = Q(KL,2,J) *RR

V = Q(KL, 3,J)*RR

W = Q(KL,4,J) *RR

QS = R4+R1*U+R2*V+R3*W

CALL SEND (QS 4)
CALL SEND (QS 3)
CALL SEND (QS 2)
PP = GAMI* (Q(KL,5,J)~.5*%Q (KL, 1,J) * (UXU+V*V+W*W))
CALL SEND (PP 4)
CALL SEND (PP 3)
CALL SEND (PP 2)
RJ = 1./Q(KL,6,J)

QSINFJ = (R4+R1*UINF+R2*VINF+R3*WINF) *RJ
CALL SEND (QSINFJ 4)
CALL SEND (QSINFJ 3)
CALL SEND (QSINFJ 2)
PINFJ = PINF*RJ

CALL SEND (PINFJ 4)
CALL SEND (PINFJ 3)
CALL SEND (PINFJ 2)
FV(5) = (Q(KL,5,J)+PP) *QS-R4*PP

FV(5) = FV(5)-(EINF+PINF) *QSINFJ+R4*PINFJ
CALL RECV (FV(4) 2)
CALL RECV (FV(3) 3)
CALL RECV (FV (1) 4)
CALL RECV (FV(2) 4)
END

FILE

2

CALL
CALL
CALL
CALL
CALL
CALL
FV(4)

FV(4)
END

RECV
RECV
RECV
RECV
RECV
RECV

{Processor 2}

(PP
(R3
(QS
(J
(KL
(Q

= Q(KL, 4,J) *QS+R3*PP
CALL RECV (PINFJ

CALL RECV (QSINFJ

CALL RECV (WINF

= FV(4) -WINF*QSINFJ-R3*PINFJ

CALL SEND (FV (4)

FILE

3

CALL
CALL
CALL
CALL
CALL
CALL

FV (3)

FV(3)

CALL
END

RECV
RECV
RECV
RECV
RECV
RECV

{processor 3}

(PP
(R2
(Qs
(J
(KL
(Q

= Q(KL, 3,J) *QS+R2*PP

CALL RECV (PINFJ

CALL RECV (QSINFJ

CALL RECV (VINF

= FV(3) -VINF*QSINFJ-R2*PINFJ

SEND

(FV(3)

FILE

4 {processor 4}

CALL RECV (QS

CALL RECV (J

CALL RECV (KL

CALL RECV (Q

FV(l) = Q(KL,1,J)*QS

CALL RECV (PP

CALL RECV (R1

FV(2) = Q(KL,2,J) *QS+R1*PP
CALL RECV (QSINFJ

FV(l) = FV(1l)-QSINFJ

CALL SEND (FV(1)

CALL RECV (PINFJ

CALL RECV (UINF

FV(2) = FV(2)-UINF*QSINFJ-R1*PINFJ
CALL SEND (FV(2)

END

APPENDIX B. SUBROUTINE ‘XXM’

a) Sequential Code

K =M
DY2 = .5/DY1

pz2 = .5/D21

KL = (L-1)*ND+K

KP = KL+1

KR = KL-1

LP = KL+ND

LR = KL-ND

DO 10 J = J1,J02

RJ = Q(KL,6,J)
IF((K.NE.1) .AND. (K.NE.KMAX)) THEN

XK = (X(KP,J)-X(KR,J))*DY2

YK = (Y(KP,J)-Y(KR,J))*DY2

ZK = (Z(KP,J)-Z(KR,J))*DY2

ELSE IF(K.EQ.1) THEN

K1 = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1,J)-X(K2,J))*DY2
YK = (=3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J))*DY2
ZK = (-3.*Z(KL,J)+4.*Z2(K1,J)-2(K2,J)) *DY2
ELSE

K1 = KL-1

K2 = KL-2 .

XK = (3.*X(KL,J)~-4.*X(K1,J)+X(K2,J)) *DY2
YK = (3.*Y(KL,J)=~-4.*Y(K1,J)+Y(K2,J)) *DY2
ZK = (3.*Z(KL,J)-4.*Z(K1,J)+Z(K2,J)) *DY2
ENDIF

IF((L.NE.1) .AND. (L.NE.LMAX)) THEN

XL = (X(LP,J)-X(LR,J))*DZ2

YL = (Y(LP,J)-Y(LR,J)) *DZ2

2L = (Z(LP,J)-Z(LR,J))*DZ2

ELSE IF(L.EQ.1) THEN

L1 = KL+ND

L2 = KL+2*ND

XL = (-3.*X(KL,J)+4.*X(L1,J)-X(L2,J))*D2z2
YL = (~3.*Y(KL,J)+4.*Y(L1,J)-Y(L2,J))*Dz2
ZL = (-3.*Z(KL,J)+4.*Z(L1,J)-2(L2,J))*Dz2
ELSE :

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)-4.*X(L1,J)+X(L2,J)) *DZ2
YL = (3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J))*DZ2
ZL = (3.*Z(KL,J)-4.*2(L1,J)+Z(L2,J))*DZ2
ENDIF

XX(J,1) = (YK*ZL-ZK*YL) *RJ

XX(J,2) = (ZK*XL-XK*ZL)*RJ

XX (J,3) = (XK*YL-YK*XL) *RJ

XX(J,4) = -OMEGA* (Z (KL, J) *XX(J,2) -Y (KL, J) *XX (J, 3))

10 CONTINUE
RETURN
END

b).

Parallel Code

FILE

1

APPENDIX B (continue)

{Processor 1}

CALL SEND (J2
CALL SEND (J1
CALL SEND (J2
CALL SEND (J1
CALL SEND (J2
CALL SEND (J1
CALL SEND (L
CALL SEND (L
CALL SEND (L

K =M

CALL SEND (KMAX
CALL SEND (KMAX
CALL SEND (KMAX
CALL SEND (K
CALL SEND (K
CALL SEND (K
CALL SEND (LMAX
CALL SEND (LMAX
CALL SEND (LMAX
CALL SEND (ND
CALL SEND (ND
CALL SEND (ND
CALL SEND (OMEGA
CALL SEND (OMEGA
CALL SEND (OMEGA
DY2 = .5/DY1
CALL SEND (DY2
CALL SEND (DY2
CALL SEND (DY2
D22 = .5/DZ1

CALL SEND (D22
CALL SEND (Dz2
CALL SEND (D22

KL = (L-1) *ND+K

CALL SEND (KL
CALL SEND (KL
CALL SEND (KL
KP = KL+1
CALL SEND (KP
CALL SEND (KP
CALL SEND (KP
KR = KL-1
CALL SEND (KR
CALL SEND (KR
CALL SEND (KR
LP = KL+ND

CALL SEND (LP

CALL SEND (LP

CALL SEND (LP

LR = KL-ND

CALL SEND (LR

CALL SEND (LR

CALL SEND (LR
NQQO=(J2-(J1)+1-0) DIV 4+1
1L0Q0=J1

MQQO=MIN (LQQO+0+1*NQQ0-1,J2)
LZZ=J1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQ0-1,J2)

CALL SEND (Q (KL, *,KZZ)KZZ=LZZ,MZ2Z,2)
LZ2Z=J1+0+2*NQQO0

MZZ=MIN (LZZ+0+3*NQQ0-1,J2)

CALL SEND (Q (KL, *,KZ2Z2)KzZ=LZZ,M2Z, 3)
LZ2Z=J1+0+3*NQQ0
MZZ=MIN(LZZ+0+4*NQQ0-1,J2)

CALL SEND(Q (KL, *,KZZ)KZZ=LZZ,MZZ,4)
LZZ=J1+0+NQQO0
MZZ=MIN(LZZ+0+2*NQQ0-1,J2)

CALL SEND (X (*,KZ2)KzZ=LZZ,MZ2Z,2)
Lz2Z=J1+0+2*NQQ0
MZZ=MIN(LZZ+0+3*NQQ0-~-1,J2)

CALL SEND (X(*,KzZZ)KZz=L2Z,MZZ, 3)
LZ2Z=J1+0+3*NQQO0
MZZ=MIN(LZZ+0+4*NQQ0-1,J2)

CALL SEND(X(*,KZZ2)KZZ=L22Z,MZZ,4)
LZZ=J1+0+NQQO0
MZZ=MIN(LZZ2+0+2*NQQ0-1,J2)

CALL SEND (Y (*,KZZ)KZZ=LZZ,MZ2Z,2)
L.Z2Z=J1+0+2*NQQO

MZZ=MIN (LZZ+0+3*NQQ0-~1,J2)

CALL SEND(Y(*,KZZ)KzZ=LZZ,MZZ, 3)
L2Z2=J1+0+3*NQQ0C
MZZ=MIN(LZZ+0+4*NQQ0-1,J2)

CALL SEND(Y(*,K2Z2)KZZ=LZZ,MZ2Z,4)
LZZ=J1+0+NQQO0

MZZ=MIN (LZZ+0+2*NQQ0-1,J2)

CALL SEND(Z(*,KZZ)KzZ=LZZ,MZ2Z,2)
LZZ2=J1+0+2*NQQ0

MZZ=MIN (LZZ+0+3*NQQ0-1,J2)

CALL SEND(Z(*,K22Z2)KZZ=LZ22,MZZ, 3)
LZ2Z=J1+0+3*NQQO0

MZZ=MIN (LZ2+0+4*NQQ0-1,J2)

CALL SEND(Z(*,KZZ)KZZ=LZZ,MZZ, 4)
DO 10 J=LQQO0,MQQ0

RJ = Q(KL, 6,J)
IF((K.NE.1l) .AND. (K.NE.KMAX)) THEN
XK = (X(KP,J)~-X(KR,J))*DY2

YK = (Y (KP, J)-Y (KR, J)) *DY2

ZK = (Z(KP,J)-Z(KR,J))*DY2

ELSE IF(K.EQ.1l) THEN

K1
K2
XK
YK
ZK
ELS
K1
K2
XK
YK
ZK
ENDIF
IF ((L
XL
YL
ZL
ELS
Ll
L2
XL
YL
2L
ELSE
L1
L2
XL
YL
2L
ENDIF
XX (J,
XX (J,
XX (J,
XX (J,
10 CONTI

1 I I o N (Y I T | A

oW

KL+1

KL+2 .
(-3.*X(KL,J)+4.*X(K1,J)-X(K2,J)) *DY2
(-3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J)) *DY2
(-3.*2(KL,J)+4.*2(K1,J)-2 (K2, J)) *DY2

KL-1
KL-2
(3.*X(KL,J)-4.*X(K1,J) +X(K2,J)) *DY2
(3.*Y(KL,J)-4.*Y(K1,J)+Y (K2,J)) *DY2
(3.*Z(KL,J)-4.*Z (K1,J)+Z2(K2,J))*DY2

.NE.1) .AND. (L.NE.LMAX)) THEN
(X(LP, J)-X (LR, J)) *D22
(Y(LP,J)-Y (LR, J)) *DZ2
(2(LP,J)-Z(LR,J)) *DZ2

IF(L.EQ.1l) THEN

KL+ND

KL+2*ND

(-3.*X (KL, J)+4.*X(L1,J)-X(L2,J)) *DZ2
(-3.*Y (KL, J)+4.*Y(L1,J)-Y(L2,J)) *D22
(-3.*%*Z2 (KL, J)+4.*Z(L1,J)-2(L2,J)) *DZ2

KL-ND

KL-2*ND '
(3.*X(KL,J)=-4.*X(L1,J)+X(L2,J)) *D22
(3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J)) *DZ2
(3.*Z(KL,J)-4.*Z2(L1,J)+2(L2,J))*DZ2

1)
2)
3)
4)
NUE
RECV (J 1)
RECV (RJ 1)

(YK*ZL-ZK*YL) *RJ

(ZK*XL-XK*ZL) *RJ

(XK*YL-YK*XL) *RJ '

-OMEGA* (Z (KL, J) *XX (J, 2) -Y (KL, J) *XX(J, 3))

- RECV (XK 1D

RECV (YK 1)
RECV (ZK 1)
RECV (K1 1)
RECV (K2 1)
RECV (XL 1)
RECV (YL 1)
RECV (ZL 1)
RECV (L1 1)
RECV (L2 1)

KQQ=J2
LZZ2=J1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQO0-1,J2)

CALL

RECV (XX (KZZ,*)K22=LZ2Z,M2Z,2)

LZZ=J1+0+2*NQQO0
MZZ=MIN (LZZ+0+3*NQQ0-1,J2)

CALL RECV (XX (KZZ, *)KzZZ=LZZ,MZZ, 3)
LZZ=J1+0+3*NQQO
MZZ=MIN(L22+0+4*NQQ0-1,J2)

CALL RECV (XX (KZZ,*)KZzZ=LZ2Z,MZZ7Z,4)
END

FILE

2 {Processor 2}

CALL RECV (J2

CALL RECV (J1
NQQO=(J2-(J1)+1-0) DIV 4+1
LQQ0=J1+0+NQQO

MQQO=MIN (LQQO0+0+2*NQQ0-1,J2)
DO 10 J=LQQ0,MQQ0

IF (J .EQ. LQQO) THEN

CALL RECV (KL

CALL RECV(Q (KL, *,KZZ) KZz2=LQQ0,MQQ0,1)
ENDIF

RJ = Q(KL, 6,J)

IF (J .EQ. LQQO) THEN

CALL RECV (KMAX

CALL RECV (K

ENDIF
IF((K.NE.1) .AND. (K.NE.KMAX)) THEN
IF (J .EQ. LQQO) THEN

CALL RECV (DY2

CALL RECV (KR

CALL RECV (KP

CALL RECV (X (*,KZ2Z)KZZ=1LQQ0,MQQ0,1)
ENDIF

XK = (X(KP,J)-X(KR,J)) *DY2

IF (J .EQ. LQQO) THEN

CALL RECV (Y (*,KZZ)KZz=LQQO0,MQQ0,1)
ENDIF

YK = (Y(KP,J)-Y(KR,J)) *DY2

IF (J .EQ. LQQO) THEN

CALL RECV(Z (*,K22)KZ2Z=LQQ0,MQQ0, 1)
ENDIF

ZK = (Z (KP,J)-Z(KR,J)) *DY2

ELSE IF(K.EQ.1) THEN

1)

1)

1)

1)

Kl = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1,J)-X(K2,J)) *DY2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)~-Y(K2,J)) *DY2
ZK = (=3.*Z(KL,J)+4.*2(K1,J)-2(K2,J)) *DY¥2
ELSE

K1 = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *DY2
YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y(K2,J)) *DY¥2
ZK = (3.*Z(KL,J)-4.*Z(K1,J)+Z(K2,J))*DY2
ENDIF

IF (J .EQ. LQQO) THEN
CALL RECV (LMAX

1)

CALL RECV (L 1)
ENDIF
IF((L.NE.1) .AND. (L.NE.LMAX)) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (Dz2 1)
CALL RECV (LR 1)
CALL RECV (LP 1)
ENDIF
XL (X(LP,J) -X (LR, dJ)) *DZ2
YL (Y(LP,J)-Y (LR, J)) *DZ2
ZL (z(LP,J)-2(LR,J)) *DZ2
ELSE IF(L.EQ.1l) THEN
IF (J .EQ. LQQO) THEN

CALL RECV (ND 1)
ENDIF

L1l = KL+ND

L2 = KL+2*ND

XL = (-3.*X(KL,J)+4.*X(L1,J)-X(L2,J))*DZ2
YL = (-3.*Y(KL,J)+4.*Y(L1,J)-Y(L2,J))*DZ2
ZL = (-3.*Z(KL,J)+4.*Z2(L1,J)-2(L2,J)) *D22
ELSE

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)-4.*X(L1,J)+X(L2,J).)*DZ2
YL = (3.*Y(KL,J)-4.*Y(L1l,J)+Y(L2,J))*D22
ZL = (3.*Z2(KL,J)-4.*2(L1,J)+2(L2,J))*DZ2
ENDIF

XX(J,1) = (YK*ZL-ZK*YL) *RJ

XX (J,2) = (ZK*XL-XK*ZL) *RJ

XX (J,3) = (XK*YL-YK*XL) *RJ
IF (J .EQ. LQQO) THEN

CALL RECV (OMEGA 1)

ENDIF

XX(J,4) = -OMEGA* (Z(KL,J) *XX(J,2)-Y (KL, J) *XX(J,3))
10 CONTINUE

KQQ=J2

IF (J .EQ. KQQ) THEN

CALL SEND (J 1)

CALL SEND (RJ 1)

CALL SEND (XK 1)

CALL SEND (YK 1)

CALL SEND (ZK 1)

CALL SEND (K1 ' 1)

CALL SEND (K2 1)

CALL SEND (XL _ 1)

CALL SEND (YL 1)

CALL SEND (ZL 1)

CALL SEND (L1l 1)

CALL SEND (L2 1)

CALL SEND (XX (KZZ, *)KZZ=LQQO0,MQQ0,1)
END

FILE

3 {Processor 3}

CALL RECV (J2

CALL RECV (J1
NQQO=(J2-(J1)+1-0) DIV 4+1
LOQ0=J1+0+2*NQQO

MQQO0=MIN (LQQO0+0+3*NQQ0-1,J2)

DO 10 J=LQQ0,MQQ0
IF (J .EQ. LQQO) THEN
CALL RECV (KL

1)

CALL RECV(Q (KL, *,KZZ) KZZ2=LQQ0,MQQ0, 1)

ENDIF

RJ = Q(KL, 6,J)

IF (J .EQ. LQQO) THEN
CALL RECV (KMAX

CALL RECV (K

ENDIF

IF((K.NE.1) .AND. (K.NE.KMAX)) THEN

IF (J .EQ. LQQO) THEN
CALL RECV (DY2
CALL RECV (KR

CALL RECV (KP

CALL RECV (X (*,KZZ)KZZ=LQQ0,MQQ0,1)

ENDIF
XK = (X(KP,J)-X(KR,J)) *DY2
IF (J .EQ. LQQO) THEN

CALL RECV (Y (*,KZZ)KZZ=LQQ0,MQQ0,1)

ENDIF
YK = (Y(KP,J)-Y(KR,J)) *DY2
IF (J .EQ. LQQO) THEN

CALL RECV(Z (*,KZZ)KZZ=LQQ0,MQQ0,1)

ENDIF
ZK = (Z2(KP,J)-2Z(KR,J))*DY2
ELSE IF(K.EQ.1l) THEN

K1l = KL+1

K2 = KL+2

XK = (=3.*X(KL,J)+4.*X(K1,J)-X(K2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J)) *DY2
ZK = (-3.*Z(KL,J)+4.*Z2(K1,J)-2Z(K2,J)) *DY2
ELSE '

K1l = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *DY2
YK = (3.*Y(KL,J)~4.*Y(K1,J)+Y(K2,J)) *DY2
ZK = (3.*Z(KL,J)-4.*Z(K1,J)+2(K2,J)) *DY2
ENDIF

IF (J .EQ. LQQO) THEN
CALL RECV (LMAX

1)

CALL RECV (L 1)
ENDIF
IF((L.NE.1) .AND. (L.NE.LMAX)) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (D22 . 1)
CALL RECV (LR 1)
CALL RECV (LP) 1)
ENDIF
XL (X(LP,J) -X(LR,J)) *DZ2
YL (Y(LP,J)-Y(LR,J)) *DZ2
ZL (z(LP,J)-Z(LR,J)) *DZ2
ELSE IF(L.EQ.1l) THEN
IF (J .EQ. LQQO) THEN

CALL RECV (ND 1)
ENDIF

L1 = KL+ND

L2 = KL+2*ND

XL = (=-3.*X(KL,J)+4.*X(L1,J)-X(L2,J))*DZ2
YL = (-3.*Y(KL,J)+4.*Y(L1,J)-Y(L2,J))*DZ2
ZL = (-3.*Z(KL,J)+4.*Z2(L1,J)-2(L2,J))*D22
ELSE

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)-4.*X(L1,J)+X(L2,J))*DZ2
YL = (3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J))*DZ2
ZL = (3.*Z2(KL,J)-4.*2(L1,J)+2(L2,J))*DZ22
ENDIF

XX(J,1) = (YK*ZL-ZK*YL) *RJ

XX(J,2) = (ZK*XL-XK*ZL) *RJ

XX (J,3) = (XK*YL-YK*XL) *RJ
IF (J .EQ. LQQO) THEN

CALL RECV (OMEGA 1)

ENDIF

XX (J,4) = ~OMEGA* (Z (KL, J) *XX(J,2)-Y (KL, J) *XX (J, 3))
10 CONTINUE

KQQ=J2

IF (J .EQ. KQQ) THEN

CALL SEND (J 1)

CALL SEND (RJ 1)

CALL SEND (XK 1)

CALL SEND (YK 1)

CALL SEND (ZK 1)

CALL SEND (K1 1)

CALL SEND (K2 1)

CALL SEND (XL 1)

CALL SEND (YL 1)

CALL SEND (ZL 1)

CALL SEND (L1 1)

CALL SEND (L2 : 1)

CALL SEND (XX (KZZ, *) KZ2=LQQ0,MQQ0, 1)
END

FILE 4 {Processor 4}

CALL RECV (J2 1)
CALL RECV (J1 1)
NQQO=(J2~ (J1) +1-0) DIV 4+1
LQQ0=J1+0+3*NQQ0

MQQ0=J2

DO 10 J=LQQO,MQQO

IF (J .EQ. LQQO) THEN

CALL RECV (KL 1)
C ____________________________

CALL RECV(Q (KL, *,K22)KZZ=LQQO0, MOQ0, 1)

ENDIF

RJ = Q(KL,6,J)

IF (J .EQ. LQQO) THEN

CALL RECV (KMAX 1)

CALL RECV (K 1)
c ____________________________

ENDIF

IF ((K.NE.1) .AND. (K.NE.KMAX)) THEN

IF (J .EQ. LQQO) THEN

CALL RECV (DY2 1)

CALL RECV (KR , 1)
C = e

CALL RECV (KP 1)

CALL RECV (X (*,K22Z)K2z2=LQQ0,M0Q0,1) '

ENDIF

XK = (X(KP,J)-X (KR, J)) *D¥2

IF (J .EQ. LQQO) THEN
c ____________________________

CALL RECV (Y (*,K2ZZ)KZ2z=LQQ0,MQQO0, 1)

ENDIF

YK = (Y(KP,J)-Y(KR,J)) *DY2

IF (J .EQ. LQQO) THEN
C ____________________________

CALL RECV(Z (*,K22Z)K2Z=LQQ0,MQQ0, 1)
ENDIF

ZK = (2(KP,J)-Z(KR,J)) *DY2

ELSE IF(K.EQ.1l) THEN

Kl = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1,J)~X(K2,J)) *DY2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)~Y(K2,J))*DY2
ZK = (-3.*Z(KL,J)+4.*Z2(K1,J)~2Z(K2,J))*DY2
ELSE

Kl = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *DY2
YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y(K2,J)) *DY2
2K = (3.*Z(KL,J)-4.*%2(K1,J)+2Z(K2,J))*DY2
ENDIF

IF (J .EQ. LQQO) THEN
CALL RECV (LMAX 1)

CALL RECV (L

ENDIF
IF((L.NE.1) .AND. (L.NE.LMAX)) THEN
IF (J .EQ. LQQO) THEN

CALL RECV (DZ2

CALL RECV (LR

CALL RECV (LP

XL = (X(LP,J)~-X(LR,J))*D22
YL = (Y(LP,J)-Y(LR,J)) *DZ2
ZL = (Z2(LP,J)~-2(LR,J)) *Dz2
ELSE IF(L.EQ.1l) THEN

IF (J .EQ. LQQO) THEN
CALL RECV (ND

ENDIF

Ll
L2
XL

KL+ND
KL+2*ND

1)

1)

(-3.*X (KL, J)+4.*X(L1,J)-X(L2,J)) *DZ2

YL = (-3.*Y(KL,J)+4.*Y(L1,J)-Y(L2,J))*DZ2
ZL = (-3.*2(KL,J)+4.*Z(L1,J)-2(L2,J))*DZ2
ELSE

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)-4.*X(L1,J)+X(L2,J)) *DZ2

YL = (3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J)) *DZ2

ZL = (3.*Z(KL,J)-4.*Z(L1,J)+2(L2,J))*DZ2

ENDIF

XX(J,1) = (YK*ZL-ZK*YL) *RJ

XX (J,2) = (ZK*XL-XK*ZL) *RJ

XX(J,3) = (XK*YL-YK*XL) *RJ

IF (J .EQ. LQQO) THEN
CALL RECV (OMEGA

ENDIF

XX (J,4)
CONTINUE
KQQ=J2
IF (J .EQ. KQQ) THEN
CALL SEND (J

CALL SEND (RJ

CALL SEND (XK

CALL SEND (YK

CALL SEND (ZK

CALL SEND (K1

CALL SEND (K2

CALL SEND (XL

CALL SEND (YL

CALL SEND (ZL

CALL SEND (L1

CALL SEND (L2

1)

-OMEGA* (2 (KL, J) *XX (J,2) =Y (KL, J) *XX(J, 3))

CALL SEND (XX (KZZ, *) K2Z2=LQQ0,MQQ0,1)
END

DX2
DZ2
JpP
JR
DO
KL
LP
LR
RJ

Hwnn=nn

o

0

APPENDIX C. SUBROUTINE ‘YYM’

a). Sequential Codes

.5/DX1
.5/DZ1
J+1l
J-1

K = K1,K2
(L-1) *ND+K
KL+ND
KL-ND
Q (KL, 6,J)

IF((J.NE.1) .AND. (J.EQ.JMAX)) THEN

XJ
YJ
ZJ
ELS
Jl
J2
XJ
YJ
2J
ELS
Jl
J2
XJ
YJ
2J

E

nnon

E

nnnon

ENDIF
IF ((L.NE.1) .AND. (L.EQ.LMAX)) THEN

XL = (X(LP,J)-X(LR,J))*D22

YL = (Y(LP,J)-Y(LR,J))*DZ2

2L = (Z(LP,J)-2(LR,J))*DZ2

ELSE IF(L.EQ.1l) THEN

L1 = KL+ND

L2 = KL+2*ND

XL = (-3.*X(KL,J)+4.*X(L1,J)—X(L2,J))*DZZ
YL = (—3.*Y(KL,J)+4.*Y(L1,J)—Y(L2,J))*DZZ
ZL = (—3.*Z(KL,J)+4.*Z(L1,J)—Z(L2,J))*DZZ
ELSE IF(L.EQ.LMAX) THEN

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)—4.*X(L1,J)+X(L2,J))*DZZ
YL = (3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J))*DZ2
2L = (3.*Z(KL,J)—4.*Z(L1,J)+Z(L2,J))*DZZ
ENDIF

YY(K,1) = (ZJ*YL-YJ*ZL)*RJ

YY(K,2) = (XJ*ZL-XL*ZJ)*RJ

YY(K,3) = (YJI*XL~XJ*YL)*RJ

YY(K,4) = —OMEGA*(Z(KL,J)*YY(K,Z)—Y(KL,J)*YY(K,3))

(X (KL, JP) =X (KL, JR)) *DX2

(Y (KL, JP) -Y (KL, JR)) *DX2

(Z (KL, JP) -Z (KL, JR)) *DX2

IF(J.EQ.1) THEN

J+1

J+2
(-3.*X(KL,J)+4.*X(KL,J1)—X(KL,JZ))*DX2
(-3.*Y(KL,J)+4.*Y(KL,J1)-Y(KL,JZ))*DX2
(-3.*Z(KL,J)+4.*Z(KL,J1)-Z(KL,JZ))*DX2
IF (J.EQ.JMAX) THEN

J-1

J-2
(3.*X(KL,J)—4.*X(KL,J1)+X(KL,J2))*DX2
(3.*Y(KL,J)-4.*Y(KL,J1)+Y(KL,J2))*DX2
(3.*Z(KL,J)—4.*Z(KL,J1)+Z(KL,J2))*DX2

10 CONTINUE

RETURN
END

FILE

1

CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
DX2 = .5/
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
DZ2 = .5/
CALL SEND
CALL SEND
CALL SEND
JP = J+1

CALL SEND
CALL SEND
CALL SEND
JR = J-1

CALL SEND
CALL SEND
CALL SEND
NQQO= (K2-
LOQ0=K1

MQQO=MIN (
LZ2=K1+0+

APPENDIX C (continue)
b) . Parallel Code
{processor 1}

(K2
(K1
(K2
(K1
(K2
(K1
(L
(L
(L
(J
(J
(J
DX1
(ND
(ND
(ND
(JMAX
(JMAX
(JMAX
(DX2
(DX2
(DX2
(LMAX
(LMAX
(LMAX
(OMEGA
(OMEGA
(OMEGA
DZ1
(Dz2
(DZ2
(DzZ2

(Jp
(Jp
(JP

(JR
(JR
(JR
(K1) +1-0) DIV 4+1

LQQO+0+1*NQQO0-1,K2)
NQQO

MZZ=MIN (LZZ2+0+2*NQQ0-1,K2)

CALL SEND(Q(*,*,J)KZ2Z2=LZ2Z,MZZ,2)

LZZ=K1+0+

2*NQQO

MZZ=MIN(LZZ+0+3*NQQ0-1,K2)
CALL SEND(Q(*,*,J)KZZ=LZZ,M22Z, 3)
LZ2Z=K1+0+3*NQQO
MZZ=MIN(LZZ+0+4*NQQ0-1,K2)
CALL SEND(Q(*,*,J)KZ22=LZ2Z,MZZ, 4)
LZZ=K1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQ0-1,K2)
CALL SEND (X (*,*)KZZ=LZZ2,MZZ, 2)
LZzZ=K1+0+2*NQQO0
MZZ=MIN(LZZ+0+3*NQQ0-1,K2)
CALL SEND (X (*, *)KZZ=LZZ,MZZ, 3)
LZ2Z2=K1+0+3*NQQO
MZZ2=MIN(LZZ+0+4*NQQ0-1,K2)
CALL SEND (X (*, *)KZZ2=LZ2Z,MZ2Z,4)
LZZ=K1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQ0-1,K2)
CALL SEND(Y(*, *)KZ2Z=L22,MZ22Z,2)
L2Z=K1+0+2*NQQ0
MZZ=MIN(LZZ+0+3*NQQ0-1,K2)
CALL SEND(Y(*, *)KZZ=L22Z2,MZZ, 3)
LZ2Z=K1+0+3*NQQO
MZZ=MIN(LZZ+0+4*NQQ0-1,K2)
CALL SEND(Y(*,*)KZZ=LZ2Z,MZ2Z, 4)
LZZ=K1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQ0-1,K2)
CALL SEND(Z(*, *)KZ2Z2=LZZ,MZZ, 2)
LZZ=K1+0+2*NQQO
MZZ=MIN(LZZ+0+3*NQQ0~-1,K2)
CALL SEND(Z (*, *)KZZ=LZZ,MZZ, 3)
LZ2Z=K1+0+3*NQQO ,
MZZ=MIN(LZZ+0+4*NQQO0-1,K2)
CALL SEND(Z (*, *)K2Z=LZZ,MZZ, 4)
DO 10 K=LQQO,MQQ0

KL = (L-1) *ND+K

LP = KL+ND

LR = KL-ND

RJ = Q(KL,6,J)

IF((J.NE.1) .AND. (J.EQ.JMAX)) THEN

XJ = (X(KL,JP)-X(KL,JR)) *DX2

YJ = (Y(KL,JP)-Y(KL,JR)) *DX2

2zJ = (2 (KL,JP)~-Z(KL,JR)) *DX2

ELSE IF(J.EQ.1l) THEN

Jl = J+1

J2 = J+2

XJ = (-3.*X(KL,J)+4.*X(KL,J1l)-X(KL,J2)) *DX2
YJ = (-3.*Y(KL,J)+4.*Y (KL,J1l)~-Y(KL,J2)) *DX2
Z2J = (-3.*Z(KL,J)+4.*2(KL,J1)~Z (KL, J2)) *DX2
ELSE IF(J.EQ.JMAX) THEN

Jl = J-1

J2 = J-2

XJ = (3.*X(KL,J)-4.*X(KL,J1l) +X (KL, J2)) *DX2
YJ = (3.*Y(KL,J)-4.*Y(KL,J1)+Y (KL, J2)) *DX2
ZJ = (3.*Z(KL,J)-4.*Z(KL,J1)+2Z (KL, J2)) *DX2

ENDIF
IF ((L
XL =
YL
ZL
ELS
L1
L2
XL
YL
ZL
ELS
L1
L2
XL
YL
ZL
ENDIF
YY (K,
YY (K,
YY (K,
YY (K,
10 CONTI

L (I | 11 I 1 | T T {1 o I T I |

KQQ=K
1L.Z22=K

.NE.1) .AND. (L.EQ.LMAX)) THEN
(X(LP,J) -X (LR, J)) *DZ2
(Y(LP,J)~-Y (LR, J)) *D2Z2
(z(Lp,J) -2 (LR, J)) *DZ2

IF(L.EQ.1) THEN

KL+ND

KL+2*ND

(-3.*X (KL, J)+4.*X(L1,J)-X(L2,J))*DZ2
(-3.*Y(KL,J)+4.*Y(L1,J)-Y(L2,J)) *DZ2
(-3.*Z (KL, J)+4.*2Z2(L1,J)-2(L2,J)) *DZ2
IF (L.EQ.LMAX) THEN

KL-ND

KL-2*ND
(3.*X(KL,J)-4.*X(L1,J)+X(L2,J))*DZ2
(3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J))*DZ2
(3.*Z2(KL,J)-4.*Z(L1,J)+2(L2,J))*DZ22

1) = (2J*YL-YJ*ZL) *RJ "’

2) = (XJ*ZL-XL*Z2J) *RJ

3) = (YTJ*XL-XJ*YL) *RJ

4) = -OMEGA* (Z (KL, J) *YY(K,2)-Y (KL, J) *YY (K, 3))
NUE

RECV (K 1)
RECV (KL 1)
RECV (LP 1)
RECV (LR 1)
RECV (RJ 1)
RECV (XJ 1)
RECV (YJ) 1)
RECV (ZJ ’ 1)
RECV (J1 . 1)
RECV (J2 1)
RECV (XL 1)
RECV (YL 1)
RECV (ZL 1)
- RECV (L1 1)
RECV (L2 1)
2

1+0+NQQO0

MZZ=MIN (LZ2Z2+0+2*NQQ0-1,K2)

CALL
LZ2Z=K

RECV (YY(KZZ, *)KzZ2=LZ2Z,MZ2Z,2)
1+0+2*NQQO

MZZ=MIN(LZZ+0+3*NQQ0-1,K2)

CALL

RECV (YY(KZZ,*)KZ2Z=L22,M2Z, 3)

LZZ=K1+0+3*NQQ0
MZZ=MIN (LZZ+0+4*NQQ0-1,K2)

CALL
END

RECV (YY(KZZ,*)KZZ=LZ2Z2,MZZ, 4)

FILE 2 {Processor 2}

CALL RECV (K2 1)
CALL RECV (K1 1)
NQQO=(K2-(K1)+1-0) DIV 4+1

LQQO0=K1+0+NQQO

MQQO=MIN (LQQO0+0+2*NQQ0-1,K2)

DO 10 K=LQQ0,MQQ0

IF (K .EQ. LQQO0O) THEN

CALL RECV (ND 1)
CALL RECV (L 1)

KL (L-1) *ND+K

LP KL+ND

IR KL-ND

IF (K .EQ. LQQO) THEN

CALL RECV (J 1)

CALL RECV(Q(*,*,J)KZZ=LQQ0,MQQ0,1)

ENDIF

RJ = Q(KL,6,J)

IF (K .EQ. LQQO) THEN

CALL RECV (JMAX 1)

ENDIF

IF((J.NE.1) .AND. (J.EQ.JMAX)) THEN

IF (K .EQ. LQQO) THEN

CALL RECV (DX2 : 1)
CALL RECV (JR 1)

CALL RECV (JP 1)
CALL RECV (X (*, *) KZZ=LQQO0,MQQ0, 1)

ENDIF

XJ = (X(KL,JP)-X (KL, JR)) *DX2

IF (K .EQ. LQQO) THEN

CALL RECV (Y (*, *)KZ2Z2=LQQ0,MQQ0,1)
ENDIF

YJ = (Y (KL, JP)-Y (KL, JR)) *DX2

IF (K .EQ. LQQO) THEN

CALL RECV(Z (*, *)KzZ=LQQ0,MQQ0,1)
ENDIF

2J = (Z(KL,JP)-Z (KL, JR)) *DX2
ELSE IF(J.EQ.1l) THEN

Jl = J+1
J2 = J+2
XJ = (-3.*X(KL,J)+4.*X (KL, J1)-X(KL,J2)) *DX2
YT = (-3.*Y(KL,J)+4.*Y(KL,J1l)~-Y(KL,J2)) *DX2
z2Jd = (-3.*2Z(KL,J)+4.*Z(KL,J1l)-Z(KL,J2)) *DX2

ELSE IF(J.EQ.JMAX) THEN
J1l J-1

J2 J-2
XJ
YJ
zJ

ENDIF

[T (O (I

IF (K .EQ.

CALL RECV

(3.*X(KL,J)-4.*X (KL, J1) +X (KL, J2)) *DX2
(3.*Y(KL,J)-4.*Y (KL,J1) +Y (KL, J2)) *DX2
(3.*Z(KL,J)-4.*Z (KL, J1)+Z (KL, J2)) *DX2 .

LQQO0) THEN _
(LMAX 1)

ENDIF

IF((L.NE.1) .AND. (L.EQ.LMAX)) THEN

IF (K .EQ.

CALL RECV

LQQ0) THEN
(D22 1)

(X(LP,J) -X (LR, J)) *D22

YL = (Y(LP,J)-Y(LR,J))*DZ2

2L = (Z(LP,J)-Z(LR,J))*Dz2

ELSE IF(L.EQ.1) THEN

Ll = KL+ND

L2 = KL+2*ND

XL = (-3.*X(KL,J)+4.*X(L1l,J)-X(L2,J)) *DZ2
YL = (-3.*Y(KL,J)+4.*Y(L1l,J)~Y(L2,J))*D22
7L = (-3.*Z(KL,J)+4.*2(L1,J)-2(L2,J)) *Dz2
ELSE IF(L.EQ.LMAX) THEN

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)-4.*X(L1,J)+X(L2,J)) *D22
YL = (3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J))*D22
7L = (3.*2(KL,J)~-4.*2(L1,J)+2Z(L2,J)) *D2Z2
ENDIF

YY(K,1) = (ZJ*YL-YJ*ZL)*RJ

YY(K,2) = (XJ*ZL-XL*ZJ)*RJ

YY(K,3) = (YJ*XL-XJ*YL)*RJ

IF (K .EQ. LQQO) THEN

CALL RECV (OMEGA 1)
ENDIF ‘

YY(K,4) = -OMEGA* (Z (KL, J) *YY (K, 2) =Y (KL, J) *YY (K, 3))
CONTINUE

KQQ=K2

IF (K .EQ. KQQ) THEN

CALL SEND (K 1)
CALL SEND (KL 1)
CALL SEND (LP 1)
CALL SEND (LR 1)
CALL SEND (RJ 1)
CALL SEND (XJ 1)
CALL SEND (YJ 1)
CALL SEND (2J : 1)
CALL SEND (J1 1)
CALL SEND (J2 ‘ 1)
CALL SEND (XL 1)
CALL SEND (YL 1)

CALL SEND (ZL 1)

CALL SEND (L1 1)
CALL SEND (L2 1)
ENDIF

CALL SEND (YY (KZZ, *) KZZ=LQQO0,MQQO0, 1)

END

3 {Processor 3}

CALL RECV (K2 1)
CALL RECV (K1l 1)
NQQO=(K2- (K1) +1-0) DIV 4+1
LQQO=K1+0+2*NQQO

MQQO=MIN (LQQO0+0+3*NQQ0-1,K2)

DO 10 K=LQQO0,MQQ0

IF (K .EQ. LQQO) THEN

CALL RECV (ND 1)
CALL RECV (L 1)

KL = (L-1) *ND+K

LP = KL+ND

LR = KL-ND

IF (K .EQ. LQQO) THEN

CALL RECV (J 1)

CALL RECV(Q(*, *,J)KZZ=LQQ0,MQQ0,1) °

ENDIF

RJ = Q(KL,6,J)

IF (K .EQ. LQQO) THEN

CALL RECV (JMAX 1)

ENDIF
IF((J.NE.1) .AND. (J.EQ.JMAX)) THEN
IF (K .EQ. LQQO) THEN

CALL RECV (DX2 1)
CALL RECV (JR 1)
CALL RECV (JP 1)
CALL RECV (X (*, *)KZZ=LQQO0,MQQ0,1)

ENDIF

XJ = (X(KL,JP)-X (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV (Y (*, *) KZZ=LQQ0,MQQO0, 1)
ENDIF

YJ = (Y (KL,JP)-Y (KL, JR)) *DX2

IF (K .EQ. LQQO) THEN

CALL RECV(Z (*, *)KzZ2=LQQ0,MQQ0,1)
ENDIF

zJ (z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.1l) THEN

Jl = J+1
J2 = J+2
XJ = (-3.*X(KL,J)+4.*X(KL,J1)-X(KL,J2)) *DX2
YJ = (-3.*Y(KL,J)+4.*Y(KL,J1)-Y (KL,J2)) *DX2
23 = (-3.*2(KL,J)+4.*Z(KL,J1)-Z(KL,J2)) *DX2

ELSE IF(J.EQ.JMAX) THEN
Jl J-1

= J-2
XJ = (3.*X(KL,J)—4.*X(KL,J1)+X(KL,J2))*DXZ

¥J (3.*Y(KL,J)—4.*Y(KL,J1)+Y(KL,J2))*DXZ
2J = (3.*Z(KL,J)—4.*Z(KL,J1)+Z(KL,J2))*DX2
ENDIF
*F (K .EQ. 10Q0) THEN
CALL RECV (LMAX 1)
ENDI
IF ((L.NE.1) .AND (L.EQ.LMAX)) THEN
IF (K - 1.0Q0) THEN
CALL RECV (DZ2 1)
ENDI

2L = (2 (LP,J)—Z(LR,J) DZ2

ELSE IF(L E THEN

Ll = KL+ND

L2 = KL+2*ND

XL = (-3.*X(KL,J)+4.*X(L1,J)-X(LZ,J))*DZZ
YL = (—3.*Y(KL,J)+4.*Y(Ll,J)-Y(LZ,J))*DZZ
ZL = (—3.*Z(KL,J)+4.*Z(L1,J)—Z(L2,J))*DZZ

ELSE IF(L.EQ.LMAX) THEN

YL (3 xy (KL, J) ~ .*Y(Ll,J)+Y(L2,) *DZ2
2L = (3 *Z (KL J)—4.*Z(L1,J)+Z(L2,) *DZ2
ENDIF :
YY(K,1) = (ZJ*YL-YJ*ZL)*RJ
YY(K,2) = (XJ*ZL-XL*ZJ)*RJ
YY(K,3) = (YJ*XL-XJ*YL)*RJ
1F (K .EQ. 1.QQ0) THEN
CcALL RECV (OMEGA 1)
ENDIF
YY (K, 4) = —OMEGA*(Z(KL,J)*YY(K,Z)-Y(KL,J)*YY(K,3))
10 CONTINU
KQQ=K2
1F (K .EQ. KQQ) THEN
CALL SEND (K 1)
CALL SEND (KL 1)
CALL SEND (LP 1)
CALL SEND (LR 1)
CALL SEND (RJ 1)
CALL SEND (XJ 1)
CALL SEND (YJ 1)
CALL SEND (z2J 1)
CALL SEND (J1 1)
CALL SEND (J2 1)
CALL SEND (XL 1)

CALL SEND (YL 1)

CALL SEND (2L
CALL SEND (L1
CALL SEND (L2
ENDIF

——— e —— . —— " - — —— - w— e T —————

CALL SEND (YY (KZ2Z, *)KZZ=LQQO0,MQQO0, 1)
END

FILE 4 {Processor 4}

CALL RECV (K2 1)
CALL RECV (K1 1)
NQQO= (K2- (K1) +1-0) DIV 4+1
LOQO=K1+0+3*NQQO

MQQO0=K2

DO 10 K=LQQO,MQQO0

IF (K .EQ. LQQO) THEN

CALL RECV (ND 1)

CALL RECV (L 1)
C ____________________________

ENDIF

KL = (L-1)*ND+K

LP = KL+ND

LR = KL-ND

IF (K .EQ. LQQO) THEN

CALL RECV (J 1)
C ____________________________

CALL RECV(Q(*, *,J)KZ2=LQQ0,MQQ0, 1)

ENDIF

RJ = Q(KL,6,J)

IF (K .EQ. LQQO) THEN

CALL RECV (JMAX 1)
C ____________________________

' ENDIF

IF((J.NE.1) .AND. (J.EQ.JMAX)) THEN

IF (K .EQ. LQQO) THEN

CALL RECV (DX2 1)

CALL RECV (JR 1)
C ____________________________

CALL RECV (JP 1)

CALL RECV (X (*, *)KZ2Z=LQQ0,MQQ0, 1)

ENDIF

XJ = (X(KL,JP)-X (KL, JR)) *DX2

IF (K .EQ. LQQO) THEN
C ____________________________

CALL RECV (Y (*, *)KZ2Z=LQQ0,MQQ0, 1)

ENDIF

YJ = (Y(KL,JP)-Y (KL, JR)) *DX2

IF (K .EQ. LQQO) THEN
C ____________________________

CALL RECV(Z (*, *) KZZ2=LQQ0,MQQ0,1)
ENDIF

Z2J3 = (Z(KL,JP)-Z(KL,JR)) *DX2
ELSE IF(J.EQ.1l) THEN

Jl = J+1
J2 = J+2
XJ = (-3.*X(KL,J)+4.*X(KL,J1l)-X(KL,J2)) *DX2
YJ = (-3.*Y(KL,J)+4.*Y(KL,J1)-Y (KL, J2)) *DX2
23 = (-3.*2(KL,J)+4.*Z(KL,J1) -2 (KL, J2)) *DX2

ELSE IF(J.EQ.JMAX) THEN
Jl = J-1

J2 = J-2

XJ = (3.*X(KL,J)~-4.*X (KL, J1l)+X (KL, J2)) *DX2
YJ = (3.*Y(KL,J)-4.*Y(KL,J1)+Y(KL,J2)) *DX2
23 = (3.*2(KL,J)-4.*Z(KL,J1)+Z (KL,J2)) *DX2
ENDIF

IF (K .EQ. LQQO) THEN

CALL RECV (LMAX ' 1)
ENDIF

IF ((L.NE.1) .AND. (L.EQ.LMAX)) THEN

IF (K .EQ. LQQO) THEN

CALL RECV (DZ2 1)
ENDIF

XL

(X(LP,J) -X(LR,J)) *DZ2

YL = (Y(LP,J)-Y(LR,J)) *DZ2

ZL = (Z2(LP,J)~Z(LR,J)) *DZ2

ELSE IF(L.EQ.l1) THEN

L1 = KL+ND

L2 = KL+2*ND

XL = (-3.*X(KL,J)+4.*X(L1,J)-X(L2,J))*DZ22
YL = (-3.*Y(KL,J)+4.*Y(L1,J)-Y(L2,J))*DZ2
2L = (-3.*Z(KL,J)+4.*2(L1,J)-2(L2,J))*Dz22
ELSE IF(L.EQ.LMAX) THEN

L1 = KL-ND

L2 = KL-2*ND

XL = (3.*X(KL,J)-4.*X(L1,J)+X(L2,J)) *DZ2
YL = (3.*Y(KL,J)-4.*Y(L1,J)+Y(L2,J))*D22
2L = (3.*Z(KL,J)-4.*Z(L1,J)+2(L2,J))*DZ2
ENDIF

YY(K,1) = (Z2J*YL-YJ*ZL) *RJ

YY(K,2) = (XJ*ZL-XL*ZJ) *RJ

YY(K,3) = (YJ*XL-XJ*YL) *RJ
IF (K .EQ. LQQO) THEN

CALL RECV (OMEGA 1)
ENDIF

YY(K,4) = -OMEGA* (Z (KL,J) *YY (K, 2)-Y (KL, J) *YY (K, 3))
CONTINUE

KQQ=K2

IF (K .EQ. KQQ) THEN

CALL SEND (K 1)
CALL SEND (KL 1)
CALL SEND (LP 1)
CALL SEND (LR 1)
CALL SEND (RJ 1)
CALL SEND (XJ 1)
CALL SEND (YJ 1)
CALL SEND (2J v 1)
CALL SEND (J1 1)
CALL SEND (J2 1)
CALL SEND (XL : 1)

CALL SEND (YL - 1)

CALL SEND (ZL

CALL SEND (L1

CALL SEND (L2

ENDIF

CALL SEND(YY(KZ2Z, *)Kz22=LQQ0,MQQ0, 1)
END

K=M

DX2 = .5/DX1

DY2 = .5/DY1

JP = J+1

JR = J-1

DO 10 L = 11,L2

KL = (L-1) *ND+K

KP = KL+1

KR = KL-1

RJ = Q (KLI 61 J)

IF((K.NE.1) ,AND. (K.NE.KMAX)) THEN

XK = (X(KP,J)-X(KR,J))*DY2

YK = (Y(KP,J)-Y(KR,J)) *DY2

ZK = (Z(KP,J)-Z(KR,J)) *DY2

ELSE IF(K.EQ.1l) THEN

K1 = KL+1

K2 = KL+2

XK = (=3.*X(KL,J)+4.*X(K1,J)-X(K2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J))*DY2
ZK = (-3.*Z(KL,J)+4.*2(K1,J)-Z(K2,J)) *D¥Y2
ELSE IF (K.EQ.KMAX) THEN

K1 = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *D¥2
YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y(K2,J))*DY2
ZK = (3.*Z(KL,J)-4.*Z2(K1,J)+Z(K2,J))*DY¥2
ENDIF

IF((J.NE.1l) .AND. (J.NE.JMAX)) THEN

XJ = (X(KL,JP)-X(KL,JR)) *DX2

YJ = (Y (KL, JP)-Y(KL,JR)) *DX2

zJ = (Z(KL,JP)-Z (KL, JR)) *DX2

ELSE IF(J.EQ.1l) THEN

Jl = J+1

J2 = J+2

XJ = (=3.*X(KL,J)+4.*X(KL,J1)-X(KL,J2)) *DX2
YJ = (-3.*Y(KL,J)+4.*Y(KL,J1)-Y (KL, J2)) *DX2
ZzJ = (-3.*%*Z(KL,J)+4.*Z (KL, J1)-Z(KL,J2)) *DX2
ELSE IF(J.EQ.JMAX) THEN

Jl = J-1

J2 = J-2

XJ = (3.*X(KL,J)-4.*X(KL,J1l)+X (KL, J2)) *DX2
YJ = (3.*Y(KL,J)-4.*Y(KL,J1l)+Y (KL, J2)) *DX2
z2J = (3.*Z2(KL,J)-4.*Z(KL,J1)+2(KL,J2)) *DX2
ENDIF

2Z(L,1) = (YJ*ZK-ZJ*YK) *RJ

ZZ(L,2) = (XK*ZJ-XJ*ZK) *RJ

2Z(L,3) = (XJ*YK-YJI*XK) *RJ

ZZ(L,4) = -OMEGA* (Z(KL,J)*22(L,2)-Y(KL,J)*ZZ(L,3))

APPENDIX D. SUBROUTINE ‘ZzZM’'

a). Sequential Code

10 CONTINUE
RETURN
END

FILE

1

CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
K=M
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
DX2 = .5/
CALL SEND
CALL SEND
CALL SEND
DY2 = ,5/
CALL SEND
CALL SEND
CALL SEND
JP = J+1
CALL SEND
CALL SEND
CALL SEND
JR = J-1
CALL SEND
CALL SEND
CALL SEND

APPENDIX D.

(continue)

b) . Parallel Code

{Processor 1}

(L2
(L1
(L2
(L1
(L2
(L1
(J
(J
(J

(K
(K
(K
(ND
(ND
(ND
(KMAX
(KMAX
(KMAX
(JMAX
(JMAX
(JMAX
(OMEGA
(OMEGA
(OMEGA
DX1
(DX2
(DX2
(DX2
DY1
(DY2
(DY2
(DY2

(JP
(Jp
(JP

(JR
(JR
(JR

NQQO=(L2-(L1)+1-0) DIV 4+1

LQQO=L1

MQQO=MIN (LQQ0+0+1*NQQ0-1,L2)

LZ2Z=L1+0+

NQQO

MZZ=MIN (LZZ2+0+2*NQQO0-1,L2)

CALL SEND(Q(*,*,J)KZZ=LZ2Z,M2Z,2)
L.ZZ=L1+0+2*NQQO0
MZZ=MIN(LZZ+0+3*NQQ0-1,12)
CALL SEND(Q(*,*,J)KZ2Z=LZ2Z,MZ22Z, 3)
LZZ=L1+0+3*NQQO
MZZ=MIN(LZZ+0+4*NQQ0-1,L2)
CALL SEND(Q(*,*,J)KZZ=LZZ,MZZ, 4)
LZ2Z2=L1+0+NQQ0
MZZ=MIN(LZZ+0+2*NQQ0-1,L2)
CALL SEND (X (*,*)KZZ=L2Z,MZ22,2)
LZ2Z=L1+0+2*NQQ0
MZZ=MIN(LZZ+0+3*NQQ0-1,L2)
CALL SEND (X (*, *)KZ2=L2Z,MZZ, 3)
LZ2Z=L1+0+3*NQQO0

MZZ=MIN (LZ2Z+0+4*NQQ0-1,L2)
CALL SEND(X(*,*)KZZ=LZZ,MZZ,4)
LZZ=L1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQ0-1,L2)
CALL SEND(Y (*, *)KZZ=LZZ,MZ2Z,2)
LZZ=L1+0+2*NQQ0
MZZ=MIN(LZZ+0+3*NQQ0-1,1L2)
CALL SEND (Y (*, *)KZ2=LZ2Z,MZZ, 3)
LZZ=L1+0+3*NQQ0

MZZ=MIN (LZZ+0+4*NQQ0~1,L2)
CALL SEND(Y (*, *)KZ2Z2=L27Z,M2Z, 4)
LZZ=L1+0+NQQO
MZZ=MIN(LZZ+0+2*NQQO0-1,L2)
CALL SEND(Z(*,*)KZZ2=L2Z,M2Z,2)
LZ2Z=L14+0+2*NQQ0
MZZ=MIN(LZZ+0+3*NQQ0-1,L2)
CALL SEND(Z (*, *)KZ2Z=LZ2,MZZ, 3)
LZZ=L1+0+3*NQQO0
MZZ=MIN(LZZ+0+4*NQQ0-1,L2)
CALL SEND(Z (*,*)KZZ=LZ2Z,MZ2Z,4)
DO 10 L=LQQO0,MQQO0

KL = (L-1)*ND+K

KP = KL+1
KR = KL-1
RJ = Q(KL/ 6/ J)

IF((K.NE.1) .AND. (K.NE.KMAX)) THEN

XK = (X(KP,J)-X(KR,J))*DY2

YK = (Y(KP,J)-Y(KR,J)) *DY2

ZK = (Z(KP,J)-2(KR,J))*DY2

ELSE IF(K.EQ.1l) THEN

K1 = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1,J)-X(K2,J)) *DY2
YK = (-3.*Y(KL,J)+4.*Y (K1,J)-Y(K2,J))*DY2
ZK = (-3.*Z(KL,J)+4.*Z(K1,J)-2(K2,J)) *DY2
ELSE IF(K.EQ.KMAX) THEN

Kl = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *DY2

YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y (K2,J)) *DY2
ZK = (3.*Z(KL,J)~4.*Z(K1,J)+Z(K2,J)) *DY2
ENDIF

IF((J.NE.1) .AND. (J.NE.JMAX)) THEN

XJ = (X(KL,JP)-X(KL,JR)) *DX2

YJ = (Y(KL,JP)-Y(KL,JR)) *DX2

zZzJ = (Z(KL,JP)-2Z(KL,JR)) *DX2

ELSE IF(J.EQ.1) THEN

Jl = J+1

J2 = J+2

XJ = (-3.*X(KL,J)+4.*X(KL,J1) -X (KL, J2)) *DX2

YJ = (~3.*Y(KL,J)+4.*Y (KL, J1)-Y(KL,J2)) *DX2

Z2J = (~-3.*Z(KL,J)+4.*Z2(KL,J1)-Z2(KL,J2)) *DX2

ELSE IF(J.EQ.JMAX) THEN

Jl = J-1

J2 = J=2

XJ = (3.*X(KL,J)-4.*X(KL,J1) +X (KL, J2)) *DX2

YJ = (3.*Y(KL,J)-4.*Y(KL,J1)+Y(KL,J2)) *DX2

Z2J = (3.*Z(KL,J)-4.*Z(KL,J1)+2(KL,J2)) *DX2

ENDIF

2Z(L,1) = (YJ*ZK-ZJ*YK) *RJ

ZZ(L,2) = (XK*ZJ-XJ*ZK) *RJ

ZZ(L,3) = (XJ*YK-YJ*XK) *RJ

Z2Z{L,4) = -OMEGA* (Z (KL, J)*ZZ(L,2)-Y(KL,J)*ZZ (L, 3))
10 CONTINUE

CALL RECV (L 1)

CALL RECV (KL 1)

CALL RECV (KP 1)

CALL RECV (KR 1)

CALL RECV (RJ 1)

CALL RECV (XK 1)

CALL RECV (YK 1)

CALL RECV (ZK 1)

CALL RECV (K1 1)

CALL RECV (K2 1)

CALL RECV (XJ 1)

CALL RECV (YJ 1)

CALL RECV (2J 1)

CALL RECV (J1 1)

CALL RECV (J2 1)

KQQ=L2

LZ2Z=L1+0+NQQ0
MZZ=MIN(LZZ+0+2*NQQ0-1,L2)

CALL RECV (2Z(KZZ,*)KZ2=LZZ,MZ22Z,2)
Lz2Z2=L1+0+2*NQQ0

MZ2=MIN (LZZ+0+3*NQQ0-1,L2)

CALL RECV (Z2Z(K2Z,*)KZZ=LZ2Z,MZ22Z, 3)
LZZ=L1+0+3*NQQ0
MZZ=MIN(LZ2Z+0+4*NQQ0-1,L2)

CALL RECV (ZZ(KZ2Z,*)KZZ=LZ27Z,MZZ,4)
END

FILE

2 {Processor 2}

CALL RECV (L2 1)
CALL RECV (L1 1)
NQQO=(L2-(L1) +1-0) DIV 4+1

LQQ0=L1+0+NQQO

MQQO=MIN (LQQ0+0+2*NQQ0-1,L2)

DO 10 L=LQQO0,MQQO0

IF (L .EQ. LQQO) THEN

CALL RECV (K 1)
CALL RECV (ND 1)
ENDIF

KL = (L-1) *ND+K

KP = KL+1

KR = KL-1

IF (L .EQ. LQQO) THEN

CALL RECV (J 1)

CALL RECV(Q(*, *,J)Kzz2=LQQ0,MQQ0, 1)

ENDIF

RJ = Q(KL, 6,J)

IF (L .EQ. LQQO) THEN

CALL RECV (KMAX ' 1)

ENDIF

IF((K.NE.1) .AND. (K.NE.KMAX)) THEN

IF (L .EQ. LQQO) THEN

CALL RECV (DY2 1)

CALL RECV (X (*, *)KZ2=LQQ0,MQQ0,1)
ENDIF

XK = (X(KP,J)-X(KR,J))*DY2

IF (L .EQ. LQQO) THEN

CALL RECV (Y (*, *) KZZ=LQQO0,MQQO0, 1)
ENDIF

YK = (Y(KP,J)-Y(KR,J)) *DY2

IF (L .EQ. LQQO) THEN

CALL RECV(Z (*, *) K2Z2=LQQ0,MQQ0,1)
ENDIF

ZK = (Z(KP,J)-2 (KR, J)) *DY2

ELSE IF(K.EQ.1l) THEN

K1l = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1,J)-X(K2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J))*DY2
ZK = (-3.*Z(KL,J)+4.*Z(K1,J)-Z(K2,J)) *DY2
ELSE IF(K.EQ.KMAX) THEN

K1l = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *DY2

YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y(K2,J))*DY2
ZK = (3.*2(KL,J)-4.*Z(K1,J)+Z(K2,J))*DY2
ENDIF

IF (L .EQ. LQQO) THEN

CALL RECV (JMAX 1)
ENDIF

IF((J.NE.1) .AND. (J.NE.JMAX)) THEN

IF (L .EQ. LQQO) THEN

CALL RECV (DX2 1)
CALL RECV (JR 1)
CALL RECV (JP 1)
ENDIF

XJ = (X(KL,JP)-X (KL, JR)) *DX2

YJ = (Y(KL,JP)-Y (KL, JR)) *DX2

ZJ = (2 (KL, JP)-2Z (KL, JR)) *DX2

ELSE IF(J.EQ.1) THEN

Jl = J+1

J2 = J+2

XJ = (-3.*X(KL,J)+4.*¥ (KL, J1)-X (KL, J2)) *DX2
YJ = (-3.*Y(KL,J)+4.*Y(KL,J1)-Y(KL,J2)) *DX2
2J = (-3.*Z2(KL,J)+4.*Z(KL,J1)-Z (KL, J2)) *DX2
ELSE IF(J.EQ.JMAX) THEN

Jl = J-1

J2 = J-2

XJ = (3.*X(KL,J)-4.*X(KL,J1)+X (KL, J2)) *DX2
YJ = (3.*Y(KL,J)-4.*Y(KL,J1)+Y (KL,J2)) *DX2
23 = (3.*Z(KL,J)-4.*Z(KL,J1)+Z (KL, J2)) *DX2
ENDIF ‘

ZZ (L,1) = (YJ*ZK-ZJ*YK) *RJ

2Z(L,2) = (XK*ZJ-XJ*ZK) *RJ

2Z(L,3) = (XJ*YK-YJ*XK) *RJ

IF (L .EQ. LQQO) THEN

CALL RECV (OMEGA 1)
ENDIF

Z2Z(L,4) = -OMEGA* (Z(KL,dJ)*Z2Z(L,2)-Y(KL,J)*2Z2Z (L, 3))
CONTINUE

KQQ=L2

IF (L. .EQ. KQQ) THEN

CALL SEND (L 1)
CALL SEND (KL 1)
CALL SEND (KP 1)
CALL SEND (KR 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XJ 1)

CALL SEND (YJ 1)

CALL SEND (2J
CALL SEND (J1
CALL SEND (J2
ENDIF

CALL SEND(ZZ (KZ2Z, *)KZZ=LQQ0,MQQ0, 1)

END

FILE

3 {Processor 3}

CALL RECV (L2

CALL RECV (L1
NQQO=(L2-(L1)+1-0) DIV 4+1
LQQO=L1+0+2*NQQO0

MQQO=MIN (LQQO0+0+3*NQQ0-1,L2)
DO 10 L=LQQO,MQQO0

IF (L .EQ. LQQO) THEN

CALL RECV (K

CALL RECV (ND

ENDIF

KL = (L-1) *ND+K
KP = KL+1

KR = KL-1

IF (L .EQ. LQQO) THEN
CALL RECV (J

CALL RECV(Q(*,*,J)KZZ=LQQ0,MQQ0,1)
ENDIF
= Q(KL, 6,J)
IF (L .EQ. LQQO) THEN
CALL RECV (KMAX

ENDIF
IF((K.NE.1) .AND. (K.NE.KMAX)) THEN
IF (L .EQ. LQQO) THEN

CALL RECV (DY2

CALL RECV (X (*, *)KZ2Z=LQQ0,MQQ0,1)
ENDIF

XK = (X(KP,J)-X(KR,J)) *DY2

IF (L .EQ. LQQO) THEN

—— e —— . - i e . —

CALL RECV (Y (*, *)KZ2=LQQ0,MQQ0, 1)
ENDIF

YK = (Y(KP,J)-Y(KR,J)) *DY2

IF (L .EQ. LQQO) THEN

CALL RECV(Z (*, *)KZ2Z=LQQ0,MQQ0,1)
ENDIF

ZK = (Z2(KP,J)~-Z(KR,J)) *DY2

ELSE IF(K.EQ.1l)THEN

1)

1)

1)

K1l = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1,J)~-X(K2,J)) *DY2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J))*DY2
ZK = (-3.*Z(KL,J)+4.*Z(K1,J) -2 (K2, J))*DYZ
ELSE IF (K.EQ.KMAX) THEN

Kl = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J)) *DY2

YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y(K2,J)) *DY2
ZK = (3.*Z(KL,J)-4.*Z2(K1,J)+2(K2,J)) *DY2
ENDIF

IF (L .EQ. LQQO) THEN

CALL RECV (JMAX 1)
ENDIF

IF((J.NE.1) .AND. (J.NE,JMAX)) THEN
IF (L .EQ. LQQO) THEN

CALL RECV (DX2 . 1)

CALL RECV (JR 1)

CALL RECV (JP 1)

ENDIF

XJ = (X(KL,JP)-X(KL,JR)) *DX2

YJ = (Y(KL,JP)-Y (KL, JR)) *DX2

2J = (Z(KL,JP)-Z(KL,JR)) *DX2

ELSE IF(J.EQ.1l) THEN

Jl = J+1

J2 = J+2

XJ = (-3.*X(KL,J)+4.*X(KL,J1)~-X(KL,J2)) *DX2
YJ = (-3.*Y(KL,J)+4.*Y(KL,Jl)-Y(KL,J2)) *DX2
2J = (-3.*Z(KL,J)+4.*Z(KL,J1)-Z2(KL,J2)) *DX2
ELSE IF(J.EQ.JMAX) THEN

Jl = J-1

J2 = J-2

XJ = (3.*X(KL,J)~-4.*X(KL,J1)+X (KL, J2)) *DX2

YJ = (3.*Y(KL,J)-4.*Y(KL,J1l)+Y (KL, J2)) *DX2

2 = (3.*2Z(KL,J)=-4.*Z(KL,J1)+2(KL,J2)) *DX2

ENDIF

Z2Z (L, 1) (YT*ZK-ZJ*YK) *RJ

ZZ(L,2) = (XK*ZJ-XJ*ZK) *RJ
2Z2(L,3) = (XJ*YK-YJ*XK) *RJ
IF (L .EQ. LQQO) THEN

CALL RECV (OMEGA 1)
ENDIF

zZz2(L,4) = -OMEGA*(Z(KL,J)*2Z(L,2)-Y(KL,J)*Z2Z(L,3))
CONTINUE

KQQ=L2

IF (L .EQ. KQQ) THEN

CALL SEND (L 1)
CALL SEND (KL 1)
CALL SEND (KP 1)
CALL SEND (KR 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XJ 1)

CALL SEND (YJ 1)

CALL SEND (2J 1)

CALL SEND (J1 1)
CALL SEND (J2 1)
ENDIF

CALL SEND(Z2Z(KZZ, *)K2Z=LQQ0,MQQ0,1)
END

FILE

4 {Processor 4}

CALL RECV (L2

CALL RECV (L1l
NQQO=(L2-(L1)+1-0) DIV 4+1
LOQO0=L1+0+3*NQQO

MQQO=L2

DO 10 L=LQQO0,MQQ0

IF (L .EQ. LQQO) THEN
CALL RECV (K

CALL RECV (ND

ENDIF

KL = (L-1) *ND+K
KP = KL+1

KR = KL-1

IF (L .EQ. LQQO) THEN
CALL RECV (J

CALL RECV(Q(*, *,J)KZZ=LQQ0,MQQ0,1)
ENDIF

RJ = Q(KL,6,J)

IF (L .EQ. LQQO) THEN

CALL RECV (KMAX

ENDIF
IF((K.NE.1) .AND. (K.NE.KMAX)) THEN
IF (L .EQ. LQQO) THEN

CALL RECV (DYZ2

CALL RECV (X (*, *)KZZ2=LQQ0,MQQ0,1)
ENDIF

XK = (X(KP,J)-X(KR,J)) *DY2

IF (L .EQ. LQQO) THEN

CALL RECV (Y (*, *)KZ2Z=LQQ0,MQQ0,1)
ENDIF

YK = (Y(KP,J)-Y(KR,J)) *DY2

IF (L .EQ. LQQO) THEN

CALL RECV(Z(*,*)KZzZ=LQQ0,MQQ0,1)
ENDIF

ZK = (Z(KP,J)-Z (KR, J)) *DY2

ELSE IF(K.EQ.1l)THEN

1)
1)

1)

1)

1)

Kl = KL+1

K2 = KL+2

XK = (-3.*X(KL,J)+4.*X(K1l,J)-X(K2,J))*DY¥2
YK = (-3.*Y(KL,J)+4.*Y(K1,J)-Y(K2,J))*DY2
ZK = (-3.*Z (KL,J)+4.*Z(K1,J)-Z2(K2,J)) *DY2
ELSE IF (K.EQ.KMAX) THEN

Kl = KL-1

K2 = KL-2

XK = (3.*X(KL,J)-4.*X(K1,J)+X(K2,J))*DY2

YK = (3.*Y(KL,J)-4.*Y(K1,J)+Y (K2,J)) *DY2
ZK = (3.*Z (KL, J)-4.*Z (K1, J)+2Z (K2,J)) *DY2
ENDIF
IF (L .EQ. LQQO) THEN
CALL RECV (JMAX 1)
C ____________________________
‘ ENDIF
IF((J.NE.1) .AND. (J.NE.JMAX)) THEN
IF (L .EQ. LQQO) THEN
CALL RECV (DX2 1)
CALL RECV (JR 1)
CALL RECV (JP 1)
C ____________________________
ENDIF
XJ = (X(KL,JP)-X (KL, JR)) *DX2
YJ = (Y (KL, JP)-Y (KL, JR)) *DX2
2J = (Z(KL,JP) -2 (KL, JR)) *DX2
ELSE IF(J.EQ.1) THEN
Jl = J+1
J2 = J+2
XJ = (-3.*X(KL,J)+4.*X (KL, J1) =X (KL, J2)) *DX2
YJ = (-3.*Y (KL, J)+4.*Y (KL, J1) -Y (KL, J2)) *DX2
2J = (-3.*Z(KL,J)+4.*2 (KL, J1) -2 (KL, J2)) *DX2
ELSE IF (J.EQ.JMAX) THEN
Jl = J-1
J2 = J-2
XJ = (3.*X(KL,J)-4.*X (KL, J1)+X (KL, J2)) *DX2
YJ = (3.*Y(KL,J)-4.*Y(KL,J1)+Y (KL, J2)) *DX2
2J = (3.*Z(KL,J)-4.*Z(KL,J1)+2 (KL, J2)) *DX2
ENDIF
2Z(L,1) = (YJ*ZK-ZJ*YK)*RJ
2Z(L,2) = (XK*2J-XJ*ZK)*RJ
27 (L,3) = (XJ*YK-YJ*XK)*RJ
IF (L .EQ. LQQO) THEN
CALL RECV (OMEGA . 1)
C ____________________________
ENDIF
2Z(L,4) = -OMEGA* (Z (KL, J) *2Z (L, 2) -Y (KL, J) *2Z (L, 3))
CONTINUE
KQQ=L2
IF (L .EQ. KQQ) THEN
CALL SEND (L 1)
CALL SEND (KL 1)
CALL SEND (KP 1)
CALL SEND (KR 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XJ 1)
CALL SEND (YJ 1)

CALL SEND (ZJ
CALL SEND (J1
CALL SEND (J2
ENDIF

CALL SEND(ZZ (K22, *) KZZ=LQQ0,MQQ0, 1)
END

